We measured the pressure drop vs flow rate during the flow, in a wide range of velocities, of well controlled yield stress fluids through confined packings of glass beads of different sizes. A detailed analysis of the data makes it possible to extract a general expression for the pressure drop vs flow rate curve through a porous medium as a function of the flow rate and the characteristics of the system. This general law has a form similar to the Herschel-Bulkley model describing the rheological behavior of such fluids in simple shear, i.e. it expresses as the sum of a critical (yielding) pressure drop and a flow rate dependent term. This law involves the rheological parameters of the fluid, one characteristic length of the medium, and two coefficients which only depend on the structure of the porous medium. The first coefficient is related to the path of maximum width throughout the porous medium while the second coefficient reflects the pore size distribution. The values of these coefficients were determined in the case of a granular packing.
SUMMARYA theoretical model of cement suspensions flow in granular porous media considering particle filtration is presented in this paper. Two phenomenological laws have been retained for the filtration rate and the intrinsic permeability evolution. A linear evolution with respect to the volume fraction of cement in the grout has been retained for the filtration rate. The intrinsic permeability of the porous medium is looked for in the form of a hyperbolic function of the porosity change. The model depends on two phenomenological parameters only. The equations of this model are solved analytically in the onedimensional case. Besides, a numerical resolution based on the finite element method is also presented. It could be implemented easily in situations where no analytical solution is available. Finally, the predictions of the model are compared to the results of a grout injection test on a long column of sand.
International audienceIn the track substructure of ancient railways in France, a fouled ballast layer has often been created with time. The mechanical behaviour of this coarse soil was studied in the laboratory using a large-scale triaxial cell. The soil taken from the fouled ballast layer of an ancient railway was re-compacted to a dry density of 2.01 Mg/m(3) at three water contents (4, 6, and 12%) corresponding to three values of the initial degree of saturation (32, 48, and 100% respectively). Both monotonic and cyclic triaxial tests were performed under constant water content conditions. The experimental results gave the following evidence of the significant effect of the water content on the soil mechanical behaviour: (i) the lower the compaction water content, the higher the shear strength; (ii) a permanent axial strain of 0.4% was found after a large number of cycles at a water content of 4%, while it was 1.4% at the higher water content of 6%. For the saturated soil specimen, failure was even observed after a limited number of cycles. Based on the results obtained, a constitutive model for permanent deformation was elaborated, that accounts for the stress level, the number of cycles and the soil water content. (C) 2012 The Japanese Geotechnical Society
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.