Sexual reproduction is crucially dependent on meiosis, a conserved, specialized cell division programme that is essential for the production of haploid gametes. Here we demonstrate that fertility and the implementation of the meiotic programme require a previously uncharacterized meiosis-specific protein, MEIOC. Meioc invalidation in mice induces early and pleiotropic meiotic defects in males and females. MEIOC prevents meiotic transcript degradation and interacts with an RNA helicase that binds numerous meiotic mRNAs. Our results indicate that proper engagement into meiosis necessitates the specific stabilization of meiotic transcripts, a previously little-appreciated feature in mammals. Remarkably, the upregulation of MEIOC at the onset of meiosis does not require retinoic acid and STRA8 signalling. Thus, we propose that the complete induction of the meiotic programme requires both retinoic acid-dependent and -independent mechanisms. The latter process involving post-transcriptional regulation likely represents an ancestral mechanism, given that MEIOC homologues are conserved throughout multicellular animals.
Deinococcaceae are a family of extremely radiation-tolerant bacteria that are currently subjected to numerous studies aimed at understanding the molecular mechanisms for such radiotolerance. To achieve a comprehensive and accurate annotation of the Deinococcus deserti genome, we performed an N terminus-oriented characterization of its proteome. For this, we used a labeling reagent, N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinimide, to selectively derivatize protein N termini. The large scale identification of N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinimide-modified N-terminal-most peptides by shotgun liquid chromatography-tandem mass spectrometry analysis led to the validation of 278 and the correction of 73 translation initiation codons in the D. deserti genome. In addition, four new genes were detected, three located on the main chromosome and one on plasmid P3. We also analyzed signal peptide cleavages on a genome-wide scale. Based on comparative proteogenomics analysis, we propose a set of 137 corrections to improve Deinococcus radiodurans and Deinococcus geothermalis gene annotations. Some of these corrections affect important genes involved in DNA repair mechanisms such as polA, ligA, and ddrB. Surprisingly, experimental evidences were obtained indicating that DnaA (the protein involved in the DNA replication initiation process) and RpsL (the S12 ribosomal conserved protein) translation is initiated in Deinococcaceae from non-canonical codons (ATC and CTG, respectively). Such use may be the basis of specific regulation mechanisms affecting replication and translation. We also report the use of non-conventional translation initiation codons for two other genes: Deide_03051 and infC. Whether such use of non-canonical translation initiation codons is much more frequent than for other previously reported bacterial phyla or restricted to Deinococcaceae remains to be investigated. Our results demonstrate that predicting translation initiation codons is still difficult for some bacteria and that proteomics-based refinement of genome annotations may be helpful in such cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.