Huntington's disease (HD) is an autosomal dominant neurodegenerative condition caused by expansions of more than 35 uninterrupted CAG repeats in exon 1 of the huntingtin gene. The CAG repeats in HD and the other seven known diseases caused by CAG codon expansions are translated into long polyglutamine tracts that confer a deleterious gain of function on the mutant proteins. Intraneuronal inclusions comprising aggregates of the relevant mutant proteins are found in the brains of patients with HD and related diseases. It is crucial to determine whether the formation of inclusions is directly pathogenic, because a number of studies have suggested that aggregates may be epiphenomena or even protective. Here, we show that fragments of the bacterial chaperone GroEL and the full-length yeast heat shock protein Hsp104 reduce both aggregate formation and cell death in mammalian cell models of HD, consistent with a causal link between aggregation and pathology.
The role of the asparagine residue in the Cys-His-Asn "catalytic triad" of cysteine proteases has been investigated by replacing Asn175 in papain by alanine and glutamine using site-directed mutagenesis. The mutants were expressed in yeast and kinetic parameters determined against the substrate carbobenzoxy-L-phenylalanyl-(7-amino-4-methylcoumarinyl)- L-arginine. At the optimal pH of 6.5, the specificity constant (k(cat)/KM)obs was reduced by factors of 3.4 and 150 for the Asn175-->Gln and Asn175-->Ala mutants, respectively. Most of this effect was the result of a decrease in k(cat), as neither mutation significantly affected KM. Substrate hydrolysis by these mutants is still much faster than the non-catalytic rate, and therefore Asn175 cannot be considered as an essential catalytic residue in the cysteine protease papain. Detailed analyses of the pH activity profiles for both mutants allow the evaluation of the role of the Asn175 side chain on the stability of the active site ion pair and on the intrinsic activity of the enzyme. Alteration of the side chain at position 175 was also found to increase aggregation and proteolytic susceptibility of the proenzyme and to affect the thermal stability of the mature enzyme, reflecting a contribution of the asparagine residue to the structural integrity of papain. The strict conservation of Asn175 in cysteine proteases might therefore result from a combination of functional and structural constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.