While the digital twins paradigm has attracted the interest of several research communities over the past twenty years, it has also gained ground recently in industrial environments, where mature technologies such as cloud, edge and IoT promise to enable the cost-effective implementation of digital twins. In the industrial manufacturing field, a digital model refers to a virtual representation of a physical product or process that integrates data taken from various sources, such as application program interface (API) data, historical data, embedded sensor data and open data, and that is capable of providing manufacturers with unprecedented insights into the product’s expected performance or the defects that may cause malfunctions. The EU-funded IoTwins project aims to build a solid platform that manufacturers can access to develop hybrid digital twins (DTs) of their assets, deploy them as close to the data origin as possible (on IoT gateway or on edge nodes) and take advantage of cloud-based resources to off-load intensive computational tasks such as, e.g., big data analytics and machine learning (ML) model training. In this paper, we present the main research goals of the IoTwins project and discuss its reference architecture, platform functionalities and building components. Finally, we discuss an industry-related use case that showcases how manufacturers can leverage the potential of the IoTwins platform to develop and execute distributed DTs for the the predictive-maintenance purpose.
With the increase of the volume of data produced by IoT devices, there is a growing demand of applications capable of elaborating data anywhere along the IoT-to-Cloud path (Edge/Fog). In industrial environments, strict real-time constraints require computation to run as close to the data origin as possible (e.g., IoT Gateway or Edge nodes), whilst batch-wise tasks such as Big Data analytics and Machine Learning model training are advised to run on the Cloud, where computing resources are abundant. The H2020 IoTwins project leverages the digital twin concept to implement virtual representation of physical assets (e.g., machine parts, machines, production/control processes) and deliver a software platform that will help enterprises, and in particular SMEs, to build highly innovative, AI-based services that exploit the potential of IoT/Edge/Cloud computing paradigms. In this paper, we discuss the design principles of the IoTwins reference architecture, delving into technical details of its components and offered functionalities, and propose an exemplary software implementation.
The concept of digital twins has growing more and more interest not only in the academic field but also among industrial environments thanks to the fact that the Internet of Things has enabled its cost-effective implementation. Digital twins (or digital models) refer to a virtual representation of a physical product or process that integrate data from various sources such as data APIs, historical data, embedded sensors and open data, giving to the manufacturers an unprecedented view into how their products are performing. The EU-funded IoTwins project plans to build testbeds for digital twins in order to run real-time computation as close to the data origin as possible (e.g., IoT Gateway or Edge nodes), and whilst batch-wise tasks such as Big Data analytics and Machine Learning model training are advised to run on the Cloud, where computing resources are abundant. In this paper, the basic concepts of the IoTwins project, its reference architecture, functionalities and components have been presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.