The measurement of latent traits and investigation of relations between these and a potentially large set of explaining variables is typical in psychology, economics, and the social sciences. Corresponding analysis often relies on surveyed data from large-scale studies involving hierarchical structures and missing values in the set of considered covariates. This paper proposes a Bayesian estimation approach based on the device of data augmentation that addresses the handling of missing values in multilevel latent regression models. Population heterogeneity is modeled via multiple groups enriched with random intercepts. Bayesian estimation is implemented in terms of a Markov chain Monte Carlo sampling approach. To handle missing values, the sampling scheme is augmented to incorporate sampling from the full conditional distributions of missing values. We suggest to model the full conditional distributions of missing values in terms of non-parametric classification and regression trees. This offers the possibility to consider information from latent quantities functioning as sufficient statistics. A simulation study reveals that this Bayesian approach provides valid inference and outperforms complete cases analysis and multiple imputation in terms of statistical efficiency and computation time involved. An empirical illustration using data on mathematical competencies demonstrates the usefulness of the suggested approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.