Rapid detection and delineation of contaminants in urban settings is critically important in protecting human health. Cores from trees growing above a plume of contaminated groundwater in Verl, Germany, were collected in 1 day, with subsequent analysis and plume mapping completed over several days. Solid-phase microextraction (SPME) analysis was applied to detect tetrachloroethene (PCE) and trichloroethene (TCE) to below nanogram/liter levels in the transpiration stream of the trees. The tree core concentrations showed a clear areal correlation to the distribution of PCE and TCE in the groundwater. Concentrations in tree cores were lower than the underlying groundwater, as anticipated; however, the tree core water retained the PCE:TCE signature of the underlying groundwater in the urban, populated area. The PCE:TCE ratio can indicate areas of differing degradation activity. Therefore, the phytoscreening analysis was capable not only of mapping the spatial distribution of groundwater contamination but also of delineating zones of potentially differing contaminant sources and degradation. The simplicity of tree coring and the ability to collect a large number of samples in a day with minimal disruption or property damage in the urban setting demonstrates that phytoscreening can be a powerful tool for gaining reconnaissance-level information on groundwater contaminated by chlorinated solvents. The use of SPME decreases the detection level considerably and increases the sensitivity of phytoscreening as an assessment, monitoring, and phytoforensic tool. With rapid, inexpensive, and noninvasive methods of detecting and delineating contaminants underlying homes, as in this case, human health can be better protected through screening of broader areas and with far faster response times.
Fresh and used aircraft engine lubricants (Mobil Jet Oil II) were analysed using a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICRMS) and comprehensive two dimensional gas chromatography with high resolution time of flight mass spectrometry (GCxGC-HRTOFMS). The composition of the fresh oil was established, with special focus to its tricresyl phosphate (TCP) content as this has formed the focus for most investigations into aerotoxic syndrome. The results showed that only four TCP isomers were present at detectable levels in the fresh oil: mmm-TCP, mmp-TCP, ppm-TCP and ppp-TCP. The results indicate that the formulation of Mobile Jet Oil II does not contain the more toxic ortho substituted TCP isomers at concentrations above 0.0005%. The temperatures of jet engines during operation are greater than 200 °C which creates the potential to alter the composition of the original oil and create other toxic compounds. The results show there may be a significant risk from alkylated cresyl phosphates, which were identified in the used oils at concentrations calculated in the range of 0.13-0.69%. w/w. Several xylenyl and ethylphenyl phosphates have been shown to exhibit a similar toxicity to ortho substituted TCP isomers which makes there discovery in used oil significant. These compounds should be included in future aircraft air quality studies and when assessing the risks and causes of aerotoxic syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.