Some subadditivity results involving symmetric (unitarily invariant) norms are obtained. For instance, if [Formula: see text] is a polynomial of degree m with non-negative coefficients, then, for all positive operators A, B and all symmetric norms, [Formula: see text] To give parallel superadditivity results, we investigate anti-norms, a class of functionals containing the Schatten q-norms for q ∈ (0, 1] and q < 0. The results are extensions of the Minkowski determinantal inequality. A few estimates for block-matrices are derived. For instance, let f : [0, ∞) → [0, ∞) be concave and p ∈(1, ∞). If fp(t) is superadditive, then [Formula: see text] for all positive m × m matrix A = [aij]. Furthermore, for the normalized trace τ, we consider functions φ(t) and f(t) for which the functional A ↦ φ ◦ τ ◦ f(A) is convex or concave, and obtain a simple analytic criterion.
In 1999 Ando and Zhan proved a subadditivity inequality for operator concave functions. We extend it to all concave functions: Given positive semidefinite matrices A, B and a non-negative concave function f on [0, ∞),for all symmetric norms (in particular for all Schatten p-norms). The case f (t) = √ t is connected to some block-matrix inequalities, for instance the operator norm inequalityfor any partitioned Hermitian matrix.
Jensen inequalities for positive linear maps of Choi and Hansen-Pedersen type are established for a large class of operator/matrix means such as some p-means and some Kubo-Ando means. These results are also extensions of the Minkowski determinantal inequality. To this end we develop the study of anti-norms, a notion parallel to the symmetric norms in matrix analysis, including functionals like Schatten q-norms for a parameter q ∈ [−∞, 1] and the Minkowski functional det 1/n A. An interpolation theorem for the Schur multiplication is given in this setting.2010 Mathematics Subject Classification: Primary 15A60, 47A30, 47A60
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.