An acridine derivative was covalently linked to the 5' end of a homopyrimidine oligonucleotide. Specific binding to a homopurine homopyrimidine sequence of duplex DNA was demonstrated by spectroscopic studies (absorption and fluorescence) and by "footprinting" experiments with a copper phenanthroline chelate used as an artificial nuclease. A hypochromism and a red shift of the acridine absorption were observed. Triple-helix formation was also accompanied by a hypochromism in the ultraviolet range. The fluorescence of the acridine ring was quenched by a stacking interaction with a GC base pair adjacent to the homopurine-homopyrimidine target sequence. The intercalating agent strongly stabilized the complex formed by the oligopyrimidine with its target duplex sequence. Cytosine methylation further increased the stability of the complexes. Footprinting studies revealed that the oligopyrimidine binds in a parallel orientation with respect to the homopurine-containing strand of the duplex. The intercalated acridine extended by 2 base pairs the region of the duplex protected by the oligopyrimidine against degradation by the nuclease activity of the copper phenanthroline chelate. Random intercalation of the acridine ring was lost due to the repulsive effect of the negatively charged oligonucleotide tail. Intercalation occurred only at those double-stranded sequences where the homopyrimidine oligonucleotide recognized the major groove of duplex DNA.
The concentration of microcystins (MCs) produced during blooms depends on variations in both the proportion of strains containing the genes involved in MC production and the MC cell quota (the ratio between the MC concentration and the density of cells with the mcyA genotype) for toxic strains. In order to assess the dynamics of MC-producing and non-MC-producing strains and to identify the impact of environmental factors on the relative proportions of these two subpopulations, we performed a 2-year survey of a perennial bloom of Planktothrix agardhii (cyanobacteria). Applying quantitative real-time PCR to the mcyA and phycocyanin genes, we found that the proportion of cells with the mcyA genotype varied considerably over time (ranging from 30 to 80% of the population). The changes in the proportion of cells with the mcyA genotype appeared to be inversely correlated to changes in the density of P. agardhii cells and also, to a lesser extent, to the availability of certain nutrients and the abundance of cladocerans. Among toxic cells, the MC cell quota varied throughout the survey. However, a negative correlation between the MC cell quota and the mcyA cell number during two short periods characterized by marked changes in the cyanobacterial biomass was found. Finally, only 54% of the variation in the MC concentrations measured in the lake can be explained by the dynamics of the density of cells with the MC producer genotype, suggesting that this measurement is not a satisfactory method for use in monitoring programs intended to predict the toxic risk associated with cyanobacterial proliferation.Cyanobacteria in freshwater ecosystems are a source of growing concern, because their proliferation leads to ecological disturbances and the toxins they produce constitute health risks for animals as well as human beings (4, 24). These microorganisms are known to produce numerous bioactive secondary metabolites (reviewed in reference 62), which can be toxic (64). These metabolites include microcystins (MCs), which are the most commonly occurring cyanotoxins and have been involved in several poisonings of animals and human beings (7). MCs are hepatotoxic cyclic heptapeptides (for their general structure and nomenclature, see reference 6) synthesized nonribosomally by a multifunctional enzyme complex (13). The gene cluster coding for this enzyme complex consists of 9 or 10 genes, depending on the genus. The corresponding genes of Microcystis aeruginosa 53), Planktothrix agardhii CYA 126 (9), and Anabaena sp. strain 90 (44) have been completely sequenced.The concentration of MCs in cells or in the water during a cyanobacterial bloom cannot be predicted. This is partly because of differences in the proportions of MC-producing and non-MC-producing subpopulations within cyanobacterial populations (27, 58, 59) and partly because of toxin heterogeneity within an MC-producing subpopulation (65) and/or differences at the level of the expression of the genes involved in the biosynthesis of these molecules (16,20). One of the most inte...
Competition between triplex formation with double-stranded DNA and oligonucleotide self-association was investigated in 23mer GA and GT oligonucleotides containing d(GA)5 or d(GT)5 repeats. Whereas triplex formation with GT oligonucleotides was diminished when temperature increased from 4 to 37 degrees C, triplex formation with GA oligonucleotides was enhanced when temperature increased within the same range due to the presence of competing intermolecular GA oligonucleotide self-structure. This self-structure was determined to be a homoduplex stabilized by the internal GA repeats. UV spectroscopy of these homoduplexes demonstrated a single sharp transition with rapid kinetics (Tm = 38.5-43.5 degrees C over strand concentrations of 0.5-4 microM, respectively, with transition enthalpy, delta H = -89 +/- 7 kcal/mol) in 10 mM MgCl2, 100 mM NaCl, pH 7.0. Homoduplex formation was strongly stabilized by multivalent cations (spermine > Mg2+ = Ca2+) and destabilized by low concentrations of monovalent cations (K+ = Li+ = Na+) in the presence of divalent cations. However, unlike GA or GT oligonucleotide-containing triplexes, the homoduplex formed even in the absence of multivalent cations, stabilized by only moderate concentrations of monovalent cations (Li+ > Na+ > K+). Through the development of multiple equilibrium states and the resulting depletion of free oligonucleotide, it was found that the presence of competing self-structure could decrease triplex formation under a variety of experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.