. Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2014, 760, pp.175-211. 10.1017/jfm.2014.589. hal-01086744 Science Arts & Métiers (SAM)is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate is investigated using the joint application of direct numerical simulations and fully three-dimensional global stability analyses. For the range of parameters investigated, base flow computations show that the roughness element induces a wake composed of a central low-speed region surrounded by a threedimensional shear layer and a pair of low-and high-speed streaks on each of its sides. Results from the global stability analyses highlight the unstable nature of the central low-speed region and its crucial importance in the laminar-turbulent transition process. It is able to sustain two different global instabilities: a sinuous and a varicose one. Each of these globally unstable modes are related to a different physical mechanism. While the varicose mode finds its root in the instability of the whole three-dimensional shear layer surrounding the central low-speed region, the sinuous instability turns out to be similar to the von Kármán instability in the two-dimensional cylinder wake and finds its root in the lateral shear layers of the separated zone. The aspect ratio of the roughness element plays a key role on the selection of the dominant instability. Indeed, whereas the flow over thin cylindrical roughness elements transitions due to a sinuous instability of the near-wake, for larger roughness element the varicose instability of the central low-speed region turns out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio η = 1 (with η = d/h) roughness element sustaining only the sinuous instability have revealed that the bifurcation occurring in this particular case is supercritical. Finally, comparison of the transition thresholds predicted by global linear stability analyses with the von Doenhoff-Braslow transition diagram provides qualitatively good agreements.
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal disturbances yielding the largest energy growth over a short time interval. Such perturbations are computed by a nonlinear global optimization approach based on a Lagrange multiplier technique. The results show that nonlinear optimal perturbations are characterized by a localized basic building block, called the minimal seed, defined as the smallest flow structure which maximizes the energy growth over short times. It is formed by vortices inclined in the streamwise direction surrounding a region of intense streamwise disturbance velocity. Such a basic structure appears to be a robust feature of the base flow since it is practically invariant with respect to the initial energy of the perturbation, the target time, the Reynolds number and the dimensions of the computational domain. The minimal seed grows very rapidly in time while spreading, and it triggers nonlinear effects which bring the flow to turbulence in a very efficient manner, through the formation of a turbulence spot. This evolution of the initial optimal disturbance has been studied in detail by direct numerical simulations. Using a perturbative formulation of the Navier-Stokes equations, each linear and nonlinear convective term of the equations has been analysed. The results show the fundamental role of the streamwise inclination of the vortices in the process. The nonlinear coupling of the finite amplitude disturbances is crucial to sustain such streamwise inclination, as well as to generate dislocations within the flow structures, and local inflectional velocity distributions. The analysis provides a picture of the transition process characterized by a sequence of structures appearing successively in the flow, namely, vortices, hairpin vortices and streamwise streaks. Finally, a disturbance regeneration cycle is conceived, initiated by the fast nonlinear amplification of the minimal seed, providing a possible scenario for the continuous regeneration of the same fundamental flow structures at smaller space and time scales.
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.This is an author-deposited version published in: http://sam.ensam.eu Handle
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.