Yra1p/REF participates in mRNA export by recruiting the export receptor Mex67p to messenger ribonucleoprotein (mRNP) complexes. Yra1p also binds Sub2p, a DEAD box ATPase/RNA helicase implicated in splicing and required for mRNA export. We identified genetic and physical interactions between Yra1p, Sub2p, and Hpr1p, a protein involved in transcription elongation whose deletion leads to poly(A) ؉ RNA accumulation in the nucleus. By chromatin immunoprecipitation (ChIP) experiments, we show that Hpr1p, Sub2p, and Yra1p become associated with active genes during transcription elongation and that Hpr1p is required for the efficient recruitment of Sub2p and Yra1p. The data indicate that transcription and export are functionally linked and that mRNA export defects may be due in part to inefficient loading of essential mRNA export factors on the growing mRNP. We also identified functional interactions between Yra1p and the exosome components Rrp45p and Rrp6p. We show that yra1, sub2, and ⌬hpr1 mutants all present defects in mRNA accumulation and that deletion of RRP6 in yra1 mutants restores normal mRNA levels. The data support the hypothesis that an exosome-dependent surveillance mechanism targets improperly assembled mRNPs for degradation. mRNAs are exported from the nucleus as messenger ribonucleoprotein (mRNP) complexes which begin to be assembled during transcription. mRNA biogenesis requires multiple processing steps, including the addition of a 5Ј cap, splicing, and 3Ј-end formation, which have to be completed before the mRNA can be exported. Fully mature mRNPs are subsequently recognized by the essential mRNA export receptor Mex67p (TAP in metazoans), which mediates the interaction between the mRNP and components of the nuclear pore complex (42, 51). The recruitment of Mex67p/TAP to the mRNP is facilitated by Yra1p (Aly in metazoans), an essential mRNA export factor which binds RNA and directly interacts with Mex67p (TAP) (47,48,52 Evidence has been accumulating that the different steps of gene expression, from transcription in the nucleus to translation and degradation in the cytoplasm, are intimately linked (37). Many mRNA processing factors are recruited to growing mRNPs through an interaction with the transcription machinery. For example, the yeast mRNA capping enzymes required for the addition of the m 7 G cap structure associate with the C-terminal domain (CTD) of RNA polymerase II at an early stage of transcription (23). Similarly, components of the splicing or polyadenylation machinery associate with the CTD, thereby positioning them to mediate efficient RNA processing.These interactions are required in vivo for maximum levels of splicing and polyadenylation, as well as for efficient transcription termination in vivo (2,13,17,38).In yeast, defects in 3Ј-end processing and/or polyadenylation prevent mRNA export and lead to the retention of transcripts at or close to their site of transcription, indicating a coupling between 3Ј-end formation and mRNA export in a step that involves the release of mRNA from n...
BackgroundAnti-CD154 (MR1) monoclonal antibody (mAb) and rapamycin (RAPA) treatment both improve survival of rat-to-mouse islet xenograft. The present study investigated the effect of combined RAPA/MR1 treatment on rat-to-mouse islet xenograft survival and analyzed the role of CD4+CD25+Foxp3+ T regulatory cells (Treg) in the induction and maintenance of the ensuing tolerance.Methodology/Principal FindingsC57BL/6 mice were treated with MR1/RAPA and received additional monoclonal anti-IL2 mAb or anti CD25 mAb either early (0–28 d) or late (100–128 d) post-transplantation. Treg were characterised in the blood, spleen, draining lymph nodes and within the graft of tolerant and rejecting mice by flow cytometry and immunohistochemistry. Fourteen days of RAPA/MR1 combination therapy allowed indefinite islet graft survival in >80% of the mice. Additional administration of anti-IL-2 mAb or depleting anti-CD25 mAb at the time of transplantation resulted in rejection (100% and 89% respectively), whereas administration at 100 days post transplantation lead to lower rejection rates (25% and 40% respectively). Tolerant mice showed an increase of Treg within the graft and in draining lymph nodes early post transplantation, whereas 100 days post transplantation no significant increase of Treg was observed. Rejecting mice showed a transient increase of Treg in the xenograft and secondary lymphoid organs, which disappeared within 7 days after rejection.Conclusions/SignificancesThese results suggest a critical role for Treg in the induction phase of tolerance early after islet xenotransplantation. These encouraging data support the need of developing further Treg therapy for overcoming the species barrier in xenotransplantation.
Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA4), an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA4 treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1β and IL-6, as well as the angiogenic factor VEGF. LXA4 also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E2 (PGE2) levels. Besides its anti-inflammatory effects, LXA4 differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP)-9 as well as modulating transforming growth factor (TGF)-β isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA4 attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA4 was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA4 on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways.
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen-presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide-specific responses. In this study, we explored the contributions of naïve and memory CD4 + T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4 + T cells, both naturally occurring and induced by sensitization with multiple third-party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4 + CD25 + T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.
Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.