International audienceEstuarine systems are complex environments where seasonal and spatial variations occur in concentrations of suspended particulate matter, in primary constituents, and in organic matter content. This study investigated in the laboratory the flocculation potential of estuarine-suspended particulate matter throughout the year in order to better identify the controlling factors and their hierarchy. Kinetic experiments were performed in the lab with a “video in lab” device, based on a jar test technique, using suspended sediments sampled every 2 months over a 14-month period at three stations in the Seine estuary (France). These sampling stations are representative of (1) the upper estuary, dominated by freshwater, and (2) the middle estuary, characterized by a strong salinity gradient and the presence of an estuarine turbidity maximum. Experiments were performed at a constant low turbulent shear stress characteristic of slack water periods (i.e., a Kolmogorov microscale >1,000 μm). Flocculation processes were estimated using three parameters: flocculation efficiency, flocculation speed, and flocculation time. Results showed that the flocculation that occurred at the three stations was mainly influenced by the concentration of the suspended particulate matter: maximum floc size was observed for concentrations above 0.1 g l−1 while no flocculation was observed for concentrations below 0.004 g l−1. Diatom blooms strongly enhanced flocculation speed and, to a lesser extent, flocculation efficiency. During this period, the maximum flocculation speed of 6 μm min−1 corresponded to a flocculation time of less than 20 min. Salinity did not appear to automatically enhance flocculation, which depended on the constituents of suspended sediments and on the content and concentration of organic matter. Examination of the variability of 2D fractal dimension during flocculation experiments revealed restructuring of flocs during aggregation. This was observed as a rapid decrease in the floc fractal dimension from 2 to 1.4 during the first minutes of the flocculation stage, followed by a slight increase up to 1.8. Deflocculation experiments enabled determination of the influence of turbulent structures on flocculation processes and confirmed that turbulent intensity is one of the main determining factors of maximum floc size. Keywords Flocculatio
International audienceCheniers from Mont-Saint-Michel bay (France) are coarse shelly sand ridges migrating on the mudfl at up to the salt marshes where they accumulate and merge in a littoral barrier. In this macrotidal setting and low wave forcing, the cheniers are rarely submerged. However, they are found to move up to several metres during coincidence of spring tide and wave activity. Their processes of migration, morphology and internal structure (composition of the beddings, grain size, sorting and grain arrange- ment) are thought to be closely related to the hydrodynamic behaviour of the coarse and shelly sediment. This paper focuses on the hydrodynamic behaviour of bioclastic sand sampled from the cheniers: settling velocities of the shell fragments were measured using a 2 m long sedimentation tube. Thresholds of motion under unidirectional current, velocity and turbulence vertical profi les were characterized in a small recirculating fl ume using Laser Doppler Anemometry (LDA). The fl at-shaped bioclastic particles feature low settling velocities and reveal a good resistance to the re-suspension effect of the fl ow when imbricated in a sediment bed. The shear stress in the bottom boundary layer has been measured in the viscous and log sub-layers. Nikuradse roughness heights (ks) for shell debris beds of different sizes have been quantifi ed. It is found that ks ≈ 2*56d50. This value is close to the ones used for classic rounded sand grains despite their major differences of shape. The dual behaviour of the shell fragments (low settling velocity, good resistance to unidirectional fl ow) should be considered as a key to understanding how this coarse material is transported across the tidal fl at, and fi nally accumulated as cheniers. Further fl ume experiments including wave activity and tidal fl uctuations are necessary to better quantify these complex processes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.