Cerebral deposition of amyloid β peptide (Aβ) is an early and critical feature of Alzheimer's disease. Aβ generation depends on proteolytic cleavage of the amyloid precursor protein (APP) by two unknown proteases: β-secretase and γ-secretase. These proteases are prime therapeutic targets. A transmembrane aspartic protease with all the known characteristics of β-secretase was cloned and characterized. Overexpression of this protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of β-secretase cleavage products, and these were cleaved exactly and only at known β-secretase positions. Antisense inhibition of endogenous BACE messenger RNA decreased the amount of β-secretase cleavage products, and purified BACE protein cleaved APP-derived substrates with the same sequence specificity as β-secretase. Finally, the expression pattern and subcellular localization of BACE were consistent with that expected for β-secretase. Future development of BACE inhibitors may prove beneficial for the treatment of Alzheimer's disease.
We have established a permanent cell line (CG-4) of rat central nervous system glial precursors from primary cultures of bipotential oligodendrocyte-type 2-astrocyte (O-2A) progenitor cells, which were kept proliferating with the mitogen(s) secreted by the neuronal B104 cell line. The CG-4 cells have a normal karyotype and display the properties of normal O-2A cells. CG-4 cells can be propagated in serum-free culture medium supplemented with medium conditioned by B104 cells for unrestricted periods of time as O-2A cells, characterized by the presence of the A2B5 surface marker and the absence of markers specific for oligodendrocytes (galactocerebroside, myelin basic protein) or type 2-astrocytes (glial acidic fibrillary protein). bFGF and PDGF are potent mitogens for CG-4 cells and their combination can substitute for the B104-derived mitogen(s). CG-4 cells are capable of differentiating into either oligodendrocytes or type 2-astrocytes. Differentiation into oligodendrocytes occurs after withdrawal of the mitogen. Replacement of the mitogen with fetal calf serum (20%), in contrast, induces 50% of the CG-4 cells to differentiate into type 2-astrocytes. Pure cultures of oligodendrocytes or type 2-astrocytes can be generated in substantial amounts from CG-4 cells and maintained for several weeks in medium containing 5% fetal calf serum.
Vanilloid receptor 1 (TRPV1), a membrane-associated cation channel, is activated by the pungent vanilloid from chili peppers, capsaicin, and the ultra potent vanilloid from Euphorbia resinifera, resiniferatoxin (RTX), as well as by physical stimuli (heat and protons) and proposed endogenous ligands (anandamide, Narachidonyldopamine, N-oleoyldopamine, and products of lipoxygenase). Only limited information is available in TRPV1 on the residues that contribute to vanilloid activation. Interestingly, rabbits have been suggested to be insensitive to capsaicin and have been shown to lack detectable [ 3 H]RTX binding in membranes prepared from their dorsal root ganglia. We have cloned rabbit TRPV1 (oTRPV1) and report that it exhibits high homology to rat and human TRPV1. Like its mammalian orthologs, oTRPV1 is selectively expressed in sensory neurons and is sensitive to protons and heat activation but is 100-fold less sensitive to vanilloid activation than either rat or human. Here we identify key residues (Met 547 and Thr 550 ) in transmembrane regions 3 and 4 (TM3/4) of rat and human TRPV1 that confer vanilloid sensitivity, [ 3 H]RTX binding and competitive antagonist binding to rabbit TRPV1. We also show that these residues differentially affect ligand recognition as well as the assays of functional response versus ligand binding. Furthermore, these residues account for the reported pharmacological differences of RTX, PPAHV (phorbol 12-phenyl-acetate 13-acetate 20-homovanillate) and capsazepine between human and rat TRPV1. Based on our data we propose a model of the TM3/4 region of TRPV1 bound to capsaicin or RTX that may aid in the development of potent TRPV1 antagonists with utility in the treatment of sensory disorders.The receptor for capsaicin (a small vanilloid molecule extracted from "hot" chili peppers), designated vanilloid receptor 1 (also known as VR1 and TRPV1 1 (1)) has been cloned and shown to be a nonselective cation channel with high permeability to calcium. TRPV1 belongs to a superfamily of ion channels known as transient receptor potential channels (TRPs) several of which appear to be sensors of temperature (2, 3). TRPV1 can be activated by exogenous agonists (capsaicin and RTX) and by physical stimuli such as heat (Ͼ42°C) and protons (pH 5). Possible endogenous ligands released during tissue injury have also been suggested, including anandamide (arachidonylethanolamine or AEA) and products of lipoxygenases such as 12-hydroperoxyeicosatetraenoic acid, N-arachidonyldopamine (NADA), and N-oleoyldopamine (OLDA) (4 -7). Ji et al. (8) reported that TRPV1 is detectable at increased levels after inflammatory injury in rodents and speculated that the increased level of TRPV1 protein combined with the confluence of stimuli present in inflammatory injury states leads to a reduced threshold of activation of nociceptors that express TRPV1, i.e. hyperalgesia. Indeed the converse is true that TRPV1-deficient mice display reduced thermal hypersensitivity following inflammatory tissue injury (9). Structure-func...
The vanilloid receptor 1 (VR1 or TRPV1) is a membrane-bound, nonselective cation channel expressed by peripheral sensory neurons. TRPV1 antagonists produce antihyperalgesic effects in animal models of inflammatory and neuropathic pain. Here, we describe the in vitro and in vivo pharmacology of a novel TRPV1 antagonist, AMG 9810,AMG 9810 is a competitive antagonist of capsaicin activation (IC 50 value for human TRPV1, 24.5 Ϯ 15.7 nM; rat TRPV1, 85.6 Ϯ 39.4 nM) and blocks all known modes of TRPV1 activation, including protons (IC 50 value for rat TRPV1, 294 Ϯ 192 nM; human TRPV1, 92.7 Ϯ 72.8 nM), heat (IC 50 value for rat TRPV1, 21 Ϯ 17 nM; human TRPV1, 15.8 Ϯ 10.8 nM), and endogenous ligands, such as anandamide, N-arachidonyl dopamine, and oleoyldopamine. AMG 9810 blocks capsaicin-evoked depolarization and calcitonin gene-related peptide release in cultures of rat dorsal root ganglion primary neurons. Screening of AMG 9810 against a panel of G protein-coupled receptors and ion channels indicated selectivity toward TRPV1. In vivo, AMG 9810 is effective at preventing capsaicin-induced eye wiping in a dose-dependent manner, and it reverses thermal and mechanical hyperalgesia in a model of inflammatory pain induced by intraplantar injection of complete Freund's adjuvant. At effective doses, AMG 9810 did not show any significant effects on motor function, as measured by open field locomotor activity and motor coordination tests. AMG 9810 is the first cinnamide TRPV1 antagonist reported to block capsaicin-induced eye wiping behavior and reverse hyperalgesia in an animal model of inflammatory pain.Activation of peripheral nociceptors in humans by capsaicin results in burning pain (Park et al., 1995). Capsaicin, and its ultrapotent analog resiniferatoxin, aided the identification and characterization of the vanilloid receptor 1 (aka VR1 and TRPV1). TRPV1 is a nonselective cation channel with high permeability to calcium (Caterina et al., 1997) and belongs to a superfamily of ion channels known as the transient receptor potential channels or TRPs (Clapham et al., 2001). In addition to activation by exogenous agonists such as capsaicin and resiniferatoxin, TRPV1 can be activated by physical stimuli, such as heat (Ͼ42°C) and protons (pH 5). Based on their structural similarity to capsaicin, several endogenous ligands have been proposed that include anandamide (AEA), 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid,N-arachidonyl dopamine (NADA), N-oleoyldopamine (OLDA), and products of lipoxygenases (Hwang et al., 2000;Olah et al., 2001;Huang et al., 2002;Chu et al., 2003). TRPV1 is up-regulated during inflammation (Ji et al., 2002), and channel activity is modulated by the action of inflammaArticle, publication date, and citation information can be found at http://jpet.aspetjournals.org.doi :
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.