Myotonic syndromes and periodic paralyses are rare disorders of skeletal muscle characterized mainly by muscle stiffness or episodic attacks of weakness. Familial forms are caused by mutations in genes coding for skeletal muscle voltage-gated ion channels. Exercise is known to trigger, aggravate, or relieve the symptoms. Therefore, exercise can be used as a functional test in electromyography to improve the diagnosis of these muscle disorders. Abnormal changes in the compound muscle action potential can be disclosed using different exercise tests. We report the outcome of an inclusive electromyographic survey of a large population of patients with identified ion channel gene defects. Standardized protocols comprising short and long exercise tests were applied on 41 unaffected control subjects and on 51 case patients with chloride, sodium, or calcium channel mutations known to cause myotonia or periodic paralysis. These tests disclosed significant changes of compound muscle action potential, which generally matched the clinical symptoms. Combining the responses to the different tests defined five electromyographic patterns (I-V) that correlated with subgroups of mutations and may be used in clinical practice as guides for molecular diagnosis. We hypothesize that mutations are segregated into the different electromyographic patterns according to the underlying pathophysiological mechanisms.
We hypothesize that segregation of mutations into the different EMG patterns depended on the underlying pathophysiological mechanisms. Results allow us to suggest EMG guidelines for the molecular diagnosis, which can be used in clinical practice.
The autosomal dominant mutation causing myotonic dystrophy (DM1) is a CTG repeat expansion in the 3'-UTR of the DM protein kinase (DMPK) gene. This multisystemic disorder includes myotonia, progressive weakness and wasting of skeletal muscle and extramuscular symptoms such as cataracts, testicular atrophy, endocrine and cognitive dysfunction. The mechanisms underlying its pathogenesis are complex. Recent reports have revealed that DMPK gene haploinsufficiency may account for cardiac conduction defects whereas cataracts may be due to haploinsufficiency of the neighboring gene, the DM-associated homeobox protein (DMAHP or SIX5) gene. Furthermore, mice expressing the CUG expansion in an unrelated mRNA develop myotonia and myopathy, consistent with an RNA gain of function. We demonstrated that transgenic mice carrying the CTG expansion in its human DM1 context (>45 kb) and producing abnormal DMPK mRNA with at least 300 CUG repeats, displayed clinical, histological, molecular and electrophysiological abnormalities in skeletal muscle consistent with those observed in DM1 patients. Like DM1 patients, these transgenic mice show abnormal tau expression in the brain. These results provide further evidence for the RNA trans-dominant effect of the CUG expansion, not only in muscle, but also in brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.