A rapidly growing demand and shortage of electric energy require mankind to efficiently use it, recuperate and store it from the existing system, when possible, for further applications whenever the need arises. Electric trains figure among big energy consumers and among different railway transportation services; light rail transit trains are characterized by frequent stoppings to entrain and detrain passengers. In their operation, traction drives are made to keep on braking in order to meet their service requirements between closely spaced passenger stations. The modern service braking system used is regenerative braking, which acts as an electric energy generator during the braking period. The objective of this paper is to estimate the magnitude of regenerative energy that can be recuperated as a percentage of train energy consumption on East-West (Ayat to Tolhailoch) and West-East (Tolhailoch-Ayat) directions of Addis Ababa Light Rail Transit. Mathematical equations have been used to calculate the energy consumed between stations followed by the quantification of regenerative energy at each passenger station. Considering the current average running speed (24km/h) of the line, it resulted that 26.31% and 28.18% of energy consumption for East-West and West-East directions respectively are saved through regenerative braking energy recuperation. From the above results, it was observed that the magnitude of regenerative energy strongly depends on the speed at which the train is running and the efficiencies of inverter and traction induction motor.
Rail transport around the world is developing very fast. There is no doubt that in the future it will be one of the most used transportation means. Different forms of railway transport have been used since its birth such as steam locomotives, Diesel electric locomotive, electric locomotives and Magnetic levitation (MAGLEV) trains. This paper aims at reducing power consumption in auxiliary system of Electric locomotives which use electrical power as a prime mover by producing electricity through train motion. Simulation in Matlab is done whereby a permanent magnet DC motor is attached to train wheel axle and with the relative motion of the rotor in the magnetic field of the permanent magnet stator produced by rotation of axles generate electricity which is stored in batteries and then supplied to auxiliary system of the train. The simulation of the system demonstrated that electricity produced is enough to power the auxiliary system, hence reducing power consumption by the train.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.