Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 influence neuronal migration and have been identified in nasal regions. Gonadotropin releasing hormone-1 (GnRH-1) neurons migrate from nasal regions into the developing forebrain, where postnatally they control reproduction. This study examined the role of SDF-1/CXCR4 in development of the GnRH-1/olfactory systems. Migrating GnRH-1 neurons were CXCR4 immunopositive as were the fibers along which they migrate. SDF-1 transcripts were detected in olfactory epithelium and vomeronasal organ, while SDF-1 immunoreactivity highlighted the GnRH-1 migratory pathway. CXCR4-deficient mice showed a decrease in GnRH-1 cells at the nasal forebrain junction and in brain, but the overall migratory pathway remained intact, no ectopic GnRH-1 cells were detected and olfactory axons reached the olfactory bulb. To further characterize the influence of SDF-1/CXCR4 in the GnRH-1 system, nasal explants were used. CXCR4 expression in vitro was similar to that in vivo. SDF-1 was detected in a dorsal midline cell cluster as well as in migrating GnRH-1 cells. Treatment of explants with bicyclam AMD3100, a CXCR4 antagonist, attenuated GnRH-1 neuronal migration and sensory axon outgrowth. Moreover, the number of GnRH-1 neurons in the explant periphery was reduced. The effects were blocked by coincubation with SDF-1. Removal of midline SDF-1 cells did not alter directional outgrowth of olfactory axons. These results indicate that SDF-1/CXCR4 signaling in not necessary for olfactory axon guidance but rather influences sensory axon extension and GnRH-1 neuronal migration, and maintains GnRH-1 neuronal expression as the cells move away from nasal pit regions.
The first mutation in a gene associated with a neuronal migration disorder was identified in patients with Kallmann Syndrome, characterized by hypogonadotropic hypogonadism and anosmia. This pathophysiological association results from a defect in the development of the GnRH and the olfactory system. A recent genetic screening of Kallmann Syndrome patients revealed a novel mutation in CCDC141. Little is known about CCDC141, which encodes a coiled-coil domain containing protein. Here, we show that Ccdc141 is expressed in GnRH neurons and olfactory fibers and that knockdown of Ccdc141 reduces GnRH neuronal migration. Our findings in human patients and mouse models predict that CCDC141 takes part in embryonic migration of GnRH neurons enabling them to form a hypothalamic neuronal network to initiate pulsatile GnRH secretion and reproductive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.