AimsTo perform wastewater analyses to assess spatial differences and temporal changes of illicit drug use in a large European population. Design Analyses of raw wastewater over a 1-week period in 2012 and 2013. Setting and Participants Catchment areas of wastewater treatment plants (WWTPs) across Europe, as follows: 2012: 25 WWTPs in 11 countries (23 cities, total population 11.50 million); 2013: 47 WWTPs in 21 countries (42 cities, total population 24.74 million). Measurements Excretion products of five illicit drugs (cocaine, amphetamine, ecstasy, methamphetamine, cannabis) were quantified in wastewater samples using methods based on liquid chromatography coupled to mass spectrometry. Findings Spatial differences were assessed and confirmed to vary greatly across European metropolitan areas. In general, results were in agreement with traditional surveillance data, where available. While temporal changes were substantial in individual cities and years (P ranging from insignificant to <10 −3 ), overall means were relatively stable. The overall mean of methamphetamine was an exception (apparent decline in 2012), as it was influenced mainly by four cities. Conclusions Wastewater analysis performed across Europe provides complementary evidence on illicit drug consumption and generally concurs with traditional surveillance data. Wastewater analysis can measure total illicit drug use more quickly and regularly than is the current norm for national surveys, and creates estimates where such data does not exist.
In 2030, the World Health Organization estimates that more than 350 million people will be diagnosed with diabetes. Consequently, Metformin - the biguanide drug of choice orally administered for diabetes type II - is anticipated to see a spike in production. Unlike many pharmaceutical drugs, Metformin (Met) is not metabolized by humans but passes through the body unchanged. Entering aquatic compartments, such as in sewage, it can be bacterially transformed to the ultimate transformation product Guanylurea (Gua). Sampling over one week (n=5) from a Southern German sewage treatment plant revealed very high average (AV) concentrations in influent (AVMet=111,800ng/L, AVGua=1300ng/L) and effluent samples (AVMet=4800ng/L, AVGua=44,000ng/L). To provide a more complete picture of the distribution and potential persistence of these compounds in the German water cycle, a new, efficient and highly sensitive liquid chromatography mass spectrometric method with direct injection was used for the measurement of Metformin and Guanylurea in drinking, surface, sewage and seawater. Limits of quantification (LOQ) ranging from 2-10ng/L allowed the detection of Metformin and Guanylurea in different locations such as: Lake Constance (n=11: AVMet=102ng/L, AVGua=16ng/L), river Elbe (n=12: AVMet=472ng/L, AVGua=9ng/L), river Weser (n=6: AVMet=349ng/L, AVGua=137ng/L) and for the first time in marine North Sea water (n=14: AVMet=13ng/L, AVGua=11ng/L). Based on daily water discharges, Metformin loads of 15.2kg/d (Elbe) and 6.4kg/d (Weser) into the North Sea were calculated. Lake Constance is used to abstract potable water which is further purified to be used as drinking water. A first screening of two tap water samples contained 2ng/L and 61ng/L of Metformin, respectively. The results of this study suggest that Metformin and Guanylurea could be distributed over a large fraction of the world's potable water sources and oceans. With no natural degradation processes, these compounds can be easily reintroduced to humans as they enter the food chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.