The amiloride-sensitive epithelial sodium channel constitutes the rate-limiting step for sodium reabsorption in epithelial cells that line the distal part of the renal tubule, the distal colon, the duct of several exocrine glands, and the lung. The activity of this channel is upregulated by vasopressin and aldosterone, hormones involved in the maintenance of sodium balance, blood volume and blood pressure. We have identified the primary structure of the alpha-subunit of the rat epithelial sodium channel by expression cloning in Xenopus laevis oocytes. An identical subunit has recently been reported. Here we identify two other subunits (beta and gamma) by functional complementation of the alpha-subunit of the rat epithelial Na+ channel. The ion-selective permeability, the gating properties and the pharmacological profile of the channel formed by coexpressing the three subunits in oocytes are similar to that of the native channel.
The epithelial Na(+) channel (ENaC) plays an essential role in the regulation of whole body Na(+) balance and blood pressure. The cell surface expression of this channel, a complex of three subunits (alpha, beta and gamma ENaC), has been shown to be regulated by hormones such as aldosterone and vasopressin and by intracellular signaling, including ubiquitylation and/or phosphorylation. However, the molecular mechanisms involving phosphorylation in the regulation of ENaC are unclear. Here we show by expression studies in Xenopus laevis oocytes that the aldosterone-induced Sgk1 kinase interacts with the ubiquitin protein ligase Nedd4-2 in a PY motif-dependent manner and phosphorylates Nedd4-2 on Ser444 and, to a lesser extent, Ser338. Such phosphorylation reduces the interaction between Nedd4-2 and ENaC, leading to elevated ENaC cell surface expression. These data show that phosphorylation of an enzyme involved in the ubiquitylation cascade (Nedd4-2) controls cell surface density of ENaC and propose a paradigm for the control of ion channels. Moreover, they suggest a novel and complete signaling cascade for aldosterone-dependent regulation of ENaC.
The epithelial amiloride-sensitive sodium channel constitutes the rate limiting step for sodium reabsorbtion by the epithelial lining the distal part of the kidney tubule, the urinary bladder and the distal colon. Reabsorbtion of sodium through this channel, which is regulated by hormones such as aldosterone and vasopressin, is one of the essential mechanisms involved in the regulation of sodium balance, blood volume and blood pressure. Here we isolate a DNA from epithelial cells of rat distal colon and identify it by functional expression of an amiloride-sensitive sodium current in Xenopus oocyte. The deduced polypeptide (698 amino acids) has at least two putative transmembrane segments. Expression of this protein in Xenopus oocytes reconstitutes the functional properties of the highly selective amiloride-sensitive, epithelial sodium channel. The gene encoding this rat sodium channel subunit shares significant sequence similarity with mec-4 and deg-1, members of a family of Caenorhabditis elegans genes involved in sensory touch transduction and, when mutated, neuronal degeneration. We propose that the gene products of these three genes are members of a gene family coding for cation channels.
Na,K-ATPase plays a crucial role in cellular ion homeostasis and is the pharmacological receptor for digitalis in man. Nine different human Na,K-ATPase isozymes, composed of 3 ␣ and  isoforms, were expressed in Xenopus oocytes and were analyzed for their transport and pharmacological properties. According to ouabain binding and K ؉ -activated pump current measurements, all human isozymes are functional but differ in their turnover rates depending on the ␣ isoform. On the other hand, variations in external K ؉ activation are determined by a cooperative interaction mechanism between ␣ and  isoforms with ␣2-2 complexes having the lowest apparent K ؉ affinity. ␣ Isoforms influence the apparent internal Na ؉ affinity in the order ␣1 > ␣2 > ␣3 and the voltage dependence in the order ␣2 > ␣1 > ␣3. All human Na,K-ATPase isozymes have a similar, high affinity for ouabain. However, ␣2- isozymes exhibit more rapid ouabain association as well as dissociation rate constants than ␣1- and ␣3- isozymes. Finally, isoformspecific differences exist in the K ؉ /ouabain antagonism which may protect ␣1 but not ␣2 or ␣3 from digitalis inhibition at physiological K ؉ levels. In conclusion, our study reveals several new functional characteristics of human Na,K-ATPase isozymes which help to better understand their role in ion homeostasis in different tissues and in digitalis action and toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.