This paper focuses on a comparison of the cosimulation schemes for coupled problems with application to coupled electromagnetic field and power-electronic simulations. A co-simulation framework between a finite element solver and a circuit solver based on the waveform relaxation scheme results in an iterative process whose convergence depends on the kind of transmission coupling conditions (TCC) on the interface between the sub-problems. The convergence of TCC is illustrated on two test cases: a boost converter and a switched reluctance motor drive.Index terms -co-simulation, optimized waveform relaxation, electrical converters, finite element
Coupled problems result in very stiff problems whose char- acteristic parameters differ with several orders in magni- tude. For such complex problems, solving them monolithi- cally becomes prohibitive. Since nowadays there are op- timized solvers for particular problems, solving uncoupled problems becomes easy since each can be solved indepen- dently with its dedicated optimized tools. Therefore the co-simulation of the sub-problems solvers is encouraged. The design of the transmission coupling conditions between solvers plays a fundamental role. The current paper ap- plies the waveform relaxation methods for co-simulation of the finite element and circuit solvers by also investigating the contribution of higher order integration methods. The method is illustrated on a coupled finite element inductor and a boost converter and focuses on the comparison of the transmission coupling conditions based on the waveform iteration numbers between the two sub-solvers. We demon- strate that for lightly coupled systems the dynamic iterations between the sub-solvers depends much on the inter- nal integrators in individual sub-solvers whereas for tightly coupled systems it depends also to the kind of transmission coupling conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.