An artificial heme enzyme was created through self‐assembly from hemin and the lactococcal multidrug resistance regulator (LmrR). The crystal structure shows the heme bound inside the hydrophobic pore of the protein, where it appears inaccessible for substrates. However, good catalytic activity and moderate enantioselectivity was observed in an abiological cyclopropanation reaction. We propose that the dynamic nature of the structure of the LmrR protein is key to the observed activity. This was supported by molecular dynamics simulations, which showed transient formation of opened conformations that allow the binding of substrates and the formation of pre‐catalytic structures.
An artificial imine reductase results upon incorporation of a biotinylated Cp*Ir moiety (Cp* = C5Me5(-)) within homotetrameric streptavidin (Sav) (referred to as Cp*Ir(Biot-p-L)Cl] ⊂ Sav). Mutation of S112 reveals a marked effect of the Ir/streptavidin ratio on both the saturation kinetics as well as the enantioselectivity for the production of salsolidine. For [Cp*Ir(Biot-p-L)Cl] ⊂ S112A Sav, both the reaction rate and the selectivity (up to 96% ee (R)-salsolidine, kcat 14-4 min(-1) vs [Ir], KM 65-370 mM) decrease upon fully saturating all biotin binding sites (the ee varying between 96% ee and 45% ee R). In contrast, for [Cp*Ir(Biot-p-L)Cl] ⊂ S112K Sav, both the rate and the selectivity remain nearly constant upon varying the Ir/streptavidin ratio [up to 78% ee (S)-salsolidine, kcat 2.6 min(-1), KM 95 mM]. X-ray analysis complemented with docking studies highlight a marked preference of the S112A and S112K Sav mutants for the SIr and RIr enantiomeric forms of the cofactor, respectively. Combining both docking and saturation kinetic studies led to the formulation of an enantioselection mechanism relying on an "induced lock-and-key" hypothesis: the host protein dictates the configuration of the biotinylated Ir-cofactor which, in turn, by and large determines the enantioselectivity of the imine reductase.
Elucidation of the coordination of metal ions to Aβ is essential to understand their role in its aggregation and to rationally design new chelators with potential therapeutic applications in Alzheimer disease. Because of that, in the last 10 years several studies have focused their attention in determining the coordination properties of Cu(2+) interacting with Aβ. However, more important than characterizing the first coordination sphere of the metal is the determination of the whole Cu(2+)-Aβ structure. In this study, we combine homology modeling (HM) techniques with quantum mechanics based approaches (QM) to determine plausible three-dimensional models for Cu(2+)-Aβ(1-16) with three histidines in their coordination sphere. We considered both ε and δ coordination of histidines 6, 13, and 14 as well as the coordination of different possible candidates containing oxygen as fourth ligand (Asp1, Glu3, Asp7, Glu11, and CO(Ala2)). Among the 32 models that enclose COO(-), the lowest energy structures correspond to [O(E3),N(δ)(H6),N(ε)(H13),N(ε)(H14)] (1), [O(E3),N(δ)(H6),N(δ)(H13),N(δ)(H14)] (2), and [O(D7),N(ε)(H6),N(δ)(H13),N(δ)(H14)] (3). The most stable model containing CO(Ala2) as fourth ligand in the Cu(2+) coordination sphere is [O(c)(A2),N(ε)(H6),N(δ)(H13),N(ε)(H14)] (4). An estimation of the relative stability between Glu3 (1) and CO(Ala2) (4) coordinated complexes seems to indicate that the preference for the latter coordination may be due to solvent effects. The present results also show the relationship between the peptidic and metallic moieties in defining the overall geometry of the complex and illustrate that the final stability of the complexes results from a balance between the metal coordination site and amyloid folding upon complexation.
Starting from biochemical knowledge followed by computational design, an artificial metallo-hydratase comprising an unnatural metal binding amino acid was created.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.