Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
SIRT3 is a major mitochondrial NAD؉ -dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, an apo-structure with no substrate, a structure with a peptide containing acetyl lysine of its natural substrate acetyl-CoA synthetase 2, a reaction intermediate structure trapped by a thioacetyl peptide, and a structure with the dethioacetylated peptide bound. These structures provide insights into the conformational changes induced by the two substrates required for the reaction, the acetylated substrate peptide and NAD ؉ . In addition, the binding study by isothermal titration calorimetry suggests that the acetylated peptide is the first substrate to bind to SIRT3, before NAD ؉ . These structures and biophysical studies provide key insight into the structural and functional relationship of the SIRT3 deacetylation activity.Sirtuins are class III histone deacetylases that couple lysine deacetylation with NAD ϩ hydrolysis and are highly conserved in prokaryotes and eukaryotes (1). Mammals possess seven sirtuins, SIRT1-7, that occupy different subcellular compartments such as the nucleus (SIRT1, -6, -7), cytoplasm (SIRT2), and the mitochondria (SIRT3, -4, and -5) (2). They deacetylate lysines not only on histone substrates (3, 4) but also on nonhistone substrates such as p53 tumor suppressor protein (5), Foxo transcription factors (6, 7), PGC-1␣ (8), ␣-tubulin (9), acetyl-CoA synthetases (10 -12), and glutamate dehydrogenase (13). SIRT4 and SIRT6 have been shown to have ADP-ribosyltransferase activity (14 -16). Sirtuins have been reported to play important roles in gene silencing (17), cell cycle regulation (18,19), metabolism (8, 10 -12, 14, 20 -22), apoptosis (5, 23, 24), the lifespan-extension effects of calorie restriction (25,26), and circadian rhythms (27)(28)(29)(30) (50), and SIRT5 (51). Sirtuins contain a conserved enzymatic core with two domains; that is, a large Rossmann fold domain that binds NAD ϩ and a small domain formed by two insertions of the large domain that binds to a zinc atom. The acetylated peptide substrate binds to the cleft between the two domains. Some of the known structures are apo structures with sirtuin protein alone, whereas others are bound to acetylated peptide substrate and/or NAD ϩ and its analogs. These structures revealed the mechanism of action for the deacetylation activity and substrate specificity.SIRT3 localizes in mitochondria (13, 52-54) and is a major mitochondrial deacetylase. Hyperacetylation of mitochondrial proteins have been observed in SIRT3 knock-out mice (13, 55). Several key enzymes involved in energy production in the mitochondria have been identified as SIRT3 substrates. Acetyl-CoA synthetase 2 (AceCS2) 2 converts acetate into acetyl-CoA in the mitochondria. Deacetyla...
Inappropriate elevation of matrix metalloproteinase-9 (MMP9) is reported to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The object of this study was to identify the molecular mechanism underlying this increase of MMP9 expression, and here we show that oxidative stress-dependent reduction of a protein deacetylase, SIRT1, known as a putative antiaging enzyme, causes elevation of MMP9 expression. A sirtuin inhibitor, splitomycin, and SIRT1 knockdown by RNA interference led an increase in MMP9 expression in human monocytic U937 cells and in primary sputum macrophages, which was detected by RT-PCR, Western blot, activity assay, and zymography. In fact, the SIRT1 level was significantly decreased in peripheral lungs of patients with COPD, and this increase was inversely correlated with MMP9 expression and MMP9 promoter activation detected by a chromatin immunoprecipitation assay. H(2)O(2) reduced SIRT1 expression and activity in U937 cells; furthermore, cigarette smoke exposure also caused reduction of SIRT1 expression in lung tissue of A/J mice, with concomitant elevation of MMP9. Intranasal treatment of a selective and novel SIRT1 small molecule activator, SRT2172, blocked the increase of MMP9 expression in the lung as well as pulmonary neutrophilia and the reduction in exercise tolerance. Thus, SIRT1 is a negative regulator of MMP9 expression, and SIRT1 activation is implicated as a novel therapeutic approach to treating chronic inflammatory diseases, in which MMP9 is abundant.
SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C-terminus of human SIRT3 but lacks an N-terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5 0 rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full-length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD 1 . Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.
A series of imidazo[1,2-b]thiazole derivatives is shown to activate the NAD(+)-dependent deacetylase SIRT1, a potential new therapeutic target to treat various metabolic disorders. This series of compounds was derived from a high throughput screening hit bearing an oxazolopyridine core. Water-solubilizing groups could be installed conveniently at either the C-2 or C-3 position of the imidazo[1,2-b]thiazole ring. The SIRT1 enzyme activity could be adjusted by modifying the amide portion of these imidazo[1,2-b]thiazole derivatives. The most potent analogue within this series, namely, compound 29, has demonstrated oral antidiabetic activity in the ob/ob mouse model, the diet-induced obesity (DIO) mouse model, and the Zucker fa/fa rat model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.