In this article we present recent developments in numerical methods for performing a Large Eddy Simulation (LES) of the formation and evolution of a wingtip vortex. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, make these types of test cases particularly challenging to investigate numerically. We first give an overview of the Spectral Vanishing Viscosity-implicit LES (SVV-iLES) solver that is used to perform the simulations, and highlight techniques that have been adopted to solve various numerical issues that arise when studying such cases. To demonstrate the method's viability, we present results from numerical simulations of flow over a NACA 0012 profile wingtip at Rec = 1.2 · 10 6 and compare them against experimental data, which is to date the highest Reynolds number achieved for a LES that has been correlated with experiments for this test case. Our model correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex dominated flows over complex geometries. = cut-off mode of the SVV filter P = P = M − 1 polynomial order of the spectral element. ε SV V = diffusion from the SVV filter Q = SVV kernel
We consider a smooth, spanwise-uniform forward-facing step defined by a Gauss error function of height 4 %-30 % and four times the width of the local boundary layer thickness δ 99 . The boundary layer flow over a smooth forward-facing stepped plate is studied with particular emphasis on stabilisation and destabilisation of the twodimensional Tollmien-Schlichting (TS) waves and subsequently on three-dimensional disturbances at transition. The interaction between TS waves at a range of frequencies and a base flow over a single or two forward-facing smooth steps is conducted by linear analysis. The results indicate that for a TS wave with a frequency F ∈ [140, 160] (F = ων/U 2 ∞ × 10 6 , where ω and U ∞ denote the perturbation angle frequency and free-stream velocity magnitude, respectively, and ν denotes kinematic viscosity), the amplitude of the TS wave is attenuated in the unstable regime of the neutral stability curve corresponding to a flat plate boundary layer. Furthermore, it is observed that two smooth forward-facing steps lead to a more acute reduction of the amplitude of the TS wave. When the height of a step is increased to more than 20 % of the local boundary layer thickness for a fixed width parameter, the TS wave is amplified, and thereby a destabilisation effect is introduced. Therefore, the stabilisation or destabilisation effect of a smooth step is typically dependent on its shape parameters. To validate the results of the linear stability analysis, where a TS wave is damped by the forward-facing smooth steps direct numerical simulation (DNS) is performed. The results of the DNS correlate favourably with the linear analysis and show that for the investigated frequency of the TS wave, the K-type transition process is altered whereas the onset of the H-type transition is delayed. The results of the DNS suggest that for the perturbation with the non-dimensional frequency parameter F = 150 and in the absence of other external perturbations, two forward-facing smooth steps of height 5 % and 12 % of the boundary layer thickness delayed the H-type transition scenario and completely suppressed for the K-type transition. By considering Gaussian white noise with both fixed and random phase shifts, it is demonstrated by DNS that transition is postponed in time and space by two forward-facing smooth steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.