Instanton partition functions of N = 1 5d Super Yang-Mills reduced on S 1 can be engineered in type IIB string theory from the (p, q)-branes web diagram. To this diagram is superimposed a web of representations of the Ding-Iohara-Miki (DIM) algebra that acts on the partition function. In this correspondence, each segment is associated to a representation, and the (topological string) vertex is identified with the intertwiner operator constructed by Awata, Feigin and Shiraishi. We define a new intertwiner acting on the representation spaces of levels (1, n) ⊗ (0, m) → (1, n + m), thereby generalizing to higher rank m the original construction. It allows us to use a folded version of the usual (p, q)-web diagram, bringing great simplifications to actual computations. As a result, the characterization of Gaiotto states and vertical intertwiners, previously obtained by some of the authors, is uplifted to operator relations acting in the Fock space of horizontal representations. We further develop a method to build qq-characters of linear quivers based on the horizontal action of DIM elements. While fundamental qq-characters can be built using the coproduct, higher ones require the introduction of a (quantum) Weyl reflection acting on tensor products of DIM generators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.