Increasing global temperatures are having a profound impact in the Arctic, including the dramatic loss of multiyear sea ice in 2007 that has continued to the present. The majority of life in the Arctic is microbial and the consequences of climate-mediated changes on microbial marine food webs, which are responsible for biogeochemical cycling and support higher trophic levels, are unknown. We examined microbial communities over time by using high-throughput sequencing of microbial DNA collected between 2003 and 2010 from the subsurface chlorophyll maximum (SCM) layer of the Beaufort Sea (Canadian Arctic). We found that overall this layer has freshened and concentrations of nitrate, the limiting nutrient for photosynthetic production in Arctic seas, have decreased. We compared microbial communities from before and after the record September 2007 sea ice minimum and detected significant differences in communities from all three domains of life. In particular, there were significant changes in species composition of Eukarya, with ciliates becoming more common and heterotrophic marine stramenopiles (MASTs) accounting for a smaller proportion of sequences retrieved after 2007. Within the Archaea, Marine Group I Thaumarchaeota, which earlier represented up to 60% of the Archaea sequences in this layer, have declined to <10%. Bacterial communities overall were less diverse after 2007, with a significant decrease of the Bacteroidetes. These significant shifts suggest that the microbial food webs are sensitive to physical oceanographic changes such as those occurring in the Canadian Arctic over the past decade.
[1] The distributions of nitrate, phosphate, and silicate in northern Baffin Bay were determined from 90 bottle casts taken between April 11 and July 21, 1998. During late spring, low-salinity Arctic water entered northern Smith Sound and mixed with Baffin Bay water (BBW) within the North Water Polynya. The Arctic water originated from the Bering Sea and contained high concentrations of phosphate and silicate (referred to as silicate-rich Arctic water (SRAW)). The distribution of the two water masses was established using a new tracer, Si ex , which showed moderate penetration of SRAW into Smith Sound during April and a very strong incursion in May and June, consistent with the intensification of southward current velocities. Biological depletion of macronutrients in BBW began in April and continued until nitrate was exhausted from the upper mixed layer in early June. Beneath the Polynya the deep waters (>450 m) showed a marked increase in nutrient concentration toward the bottom, which was most pronounced in the south and much stronger for silicate than nitrate and phosphate. The silicate enrichment was consistent with dissolution of diatom-derived biogenic silica in deep waters. The results indicate that the North Water acts as a silicate trap in which the biota differentially transports surface silicate to depth, thereby influencing local and downstream nutrient signatures.
Nitrogen is a limiting nutrient for primary production in the western Arctic Ocean. Measurements of the nitrogen (15N/14N) and oxygen (18O/16O) isotope ratios of nitrate in the southeastern Beaufort Sea provide insight into biogeochemical cycling of nitrogen in the western Arctic Ocean. Nitrate O isotope ratios in the Pacific halocline evidence a highly regenerated reservoir. Coincident peaks in nutrient concentrations and reduced dissolved oxygen concentrations suggest that nitrate accrues from organic matter remineralization in bottom waters of the Chukchi shelf and that these ventilate the basin predominantly in summer, when isolated from the atmosphere. Preformed nitrate in Pacific Winter Water lacks 18O/16O elevation from nitrate assimilation, contrasting with preformed nitrate in other ocean regions. A reactive N deficit and elevated nitrate N isotope ratios in the Pacific halocline further indicate substantial N loss to coupled nitrification‐denitrification in shelf sediments upstream. In the Atlantic Water below, nitrate isotope ratios identify two distinct waters entering the Arctic at Fram Strait, from (1) the surface West Spitsbergen Current, bearing isotopic signatures akin to North Atlantic waters, and (2) deeper inflows of waters ventilated in the Nordic Seas, transporting nitrate O isotope ratios indicative of regenerated nitrate. Poorly ventilated Canada Basin Deep Water shows evidence of nominal accrual of remineralized products, and nitrate isotope ratios suggest an influence of slow benthic denitrification on the sea floor. The observations reveal that shelf processes have a disproportionate influence on tracer properties of the Pacific halocline, while those in Atlantic Water are dominated by processes in the Nordic Seas.
The Arctic Ocean and its marginal seas are among the marine regions most affected by climate change. Here we present the results of a diagnostic model used to elucidate the main drivers of primary production (PP) trends over the 1998–2010 period at pan-Arctic and local (i.e. 9.28 km resolution) scales. Photosynthetically active radiation (PAR) above and below the sea surface was estimated using precomputed look-up tables of spectral irradiance and satellite-derived cloud optical thickness and cloud fraction parameters from the International Satellite Cloud Climatology Project (ISCCP) and sea ice concentration from passive microwaves data. A spectrally resolved PP model, designed for optically complex waters, was then used to produce maps of PP trends. Results show that incident PAR above the sea surface (PAR(0+)) has significantly decreased over the whole Arctic and sub-Arctic Seas, except over the perrennially sea ice covered waters of the Central Arctic Ocean. This fading of PAR(0+) (+8% decade<sup>–1</sup>) was caused by increasing cloudiness May and June. Meanwhile PAR penetrating the ocean (PAR(0–)) increased only along the sea ice margin over the large Arctic continental shelf where sea ice concentration declined sharply since 1998. Overall, PAR(0–) slightly increased in the Circum Arctic (+3.4% decade<sup>–1</sup>), while it decreased when considering both Arctic and sub-Arctic Seas (–3% decade<sup>–1</sup>). We showed that rising phytoplankton biomass (i.e. chlorophyll <i>a</i>) normalized by the diffuse attenuation of photosynthetically usable radiation (PUR) by phytoplankton accounted for a larger proportion of the rise in PP than did the increase in light availability due to sea-ice loss in several sectors and particularly in perrennially and seasonally open waters. Against a general backdrop of rising productivity over Arctic shelves, significant negative trends were observed in regions known for their great biological importance such as the coastal polynyas of Northern Greenland
Temperature and salinity data collected around grounded tabular icebergs in Baffin Bay in 2011, 2012, and 2013 indicate wind‐induced upwelling at certain locations around the icebergs. These data suggest that along one side of the iceberg, wind forcing leads to Ekman transport away from the iceberg, which causes upwelling of the cool saline water from below. The upwelling water mixes with the water above the thermocline, causing the mixed layer to become cooler and more saline. Along the opposite side of the iceberg, the surface Ekman transport moves towards the iceberg, which causes a sharpening of the thermocline as warm fresh water is trapped near the surface. This results in higher mixed layer temperatures and lower mixed layer salinities on this side of the iceberg. Based on these in situ measurements, we hypothesize that the asymmetries in water properties around the iceberg, caused by the opposing effects of upwelling and sharpening of the thermocline, lead to differential deterioration around the iceberg. Analysis of satellite imagery around iceberg PII‐B‐1 reveals differential decay around the iceberg, in agreement with this mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.