In order to study the physiological implication of sex steroid hormones in gonadal sex differentiation in fish, we first investigated the potential role of estrogens using two fish models: the rainbow trout (Oncorhynchus mykiss) and a tilapia species (Oreochromis niloticus). All experiments were carried out on genetically all-male (XY) and all-female (XX) populations. In vivo treatments with an aromatase inhibitor (ATD, 1,4,6- androstatriene-3-17-dione) result in 100% masculinization of an all-female population in rainbow trout (dosage 50 mg/kg of food) and 75.3% in tilapia (dosage 150 mg/kg of food). In tilapia, the effectiveness of the aromatase inhibition by ATD is demonstrated by the marked decrease of the gonadal aromatase activity in treated animals versus control. No masculinization is obtained following treatment with an estrogen receptor antagonist (tamoxifen) in both species. Aromatase and estrogen receptor gene expression was studied in rainbow trout by semi-quantitative RT-PCR in gonads sampled before, during and after sex-differentiation. Aromatase mRNA is specifically detected in female gonads, 3 weeks before the first sign of histological sex-differentiation, i.e., first female meiosis. Aromatase expression in male gonads is at least a few hundred times less than in female gonads. Estrogen receptor gene is expressed in both male and female gonads at all stages with no dimorphic expression between sexes. Specific aromatase gene expression before ovarian differentiation was also demonstrated using virtual Northern blot, with no expression detected in male differentiating gonads. From these results it can be concluded that estrogen synthesis is crucial for ovarian differentiation, and transcription of the aromatase gene can be proposed as a key step in that process in fish.
Nile tilapia Oreochromis niloticus, initial age 12 days, were given an unrestricted (NR) or restricted (R) ration over 93 days which resulted in fish of very different sizes although the body condition factor (K) and the viscero-somatic index (I V ) remained almost unchanged. In a second stage (64 days) each group (NR & R) was divided into three subgroups that were subjected to 0 (NR0, R0), 15 (NR15, R15) and 30 (NR30, R30) days of food restriction, respectively. The impact of the different treatments on the somatic growth during the second stage of the experiment had an effect, with a highly significant difference between the mean .. masses (M T ) in the different subgroups (NR0=115·0 26·6 g; NR15=94·8 24·9 g; NR30=56·3 28 g; R0=76·4 20·1 g; R15=72·1 17·6 g; R30=43·6 17·2 g). Similarly, K and I V decreased. Irrespective of the initial feeding condition, the width of the otolith microincrements started to decrease at the end of the first or second day of restricted feeding. In the subgroups given a restricted food ration for 30 days (NR30 and R30), this decrease reached a plateau at about day 30, which was maintained even when the restriction had ended. This slowed growth did not lead to any marked halt in microincrement formation, since there were no significant differences (ANOVA; P>0·05) in the numbers of increments counted in the various subgroups. The results show that in 153 day old fish, a period of severe food restriction, even if prolonged (15 to 30 days), had no influence on the timing of the laying down of microincrements but only affected their growth.
Sex-determining regions have been identified in the Nile tilapia on linkage groups (LG) 1, 20 and 23, depending on the domesticated strains used. Sex determining studies on wild populations of this species are scarce. Previous work on two wild populations, from Lake Volta (Ghana) and from Lake Koka (Ethiopia), found the sex-determining region on LG23. These populations have a Y-specific tandem duplication containing two copies of the Anti-Müllerian Hormone amh gene (named amhY and amhΔY). Here, we performed a whole-genome short-reads analysis using male and female pools on a third wild population from Lake Hora (Ethiopia). We found no association of sex with LG23, and no duplication of the amh gene. Furthermore, we found no evidence of sex linkage on LG1 or on any other LGs. Long read whole genome sequencing of a male from each population confirmed the absence of a duplicated region on LG23 in the Lake Hora male. In contrast, long reads established the structure of the Y haplotype in Koka and Kpandu males and the order of the genes in the duplicated region. Phylogenies constructed on the nuclear and mitochondrial genomes, showed a closer relationship between the two Ethiopian populations compared to the Ghanaian population, implying an absence of the LG23Y sex-determination region in Lake Hora males. Our study supports the hypothesis that the amh region is not the sex-determining region in Hora males. The absence of the Y amh duplication in the Lake Hora population reflects a rapid change in sex determination within Nile tilapia populations. The genetic basis of sex determination in the Lake Hora population remains unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.