We show that the generalized nonlinear Schrödinger equation admits of an analytical solution for a bright optical soliton in the presence of fourth-order dispersion. The soliton envelope is expressed as the square of a hyperbolic secant. The peak power and the duration of the soliton are uniquely defined. Numerical simulations tend to show that the temporal shape and the peak power of the soliton are stable when a weak third-order dispersion is introduced.
Preferential tumor localization and the aggregation state of photosensitizers (PSs) can depend on the hydrophilic/hydrophobic nature of the molecule and affect their phototoxicity. In this study, three PSs of different hydrophilicity are introduced in liposomes to understand the structure-photochemistry relationship of PSs in this cellular model system. Absorbance and fluorescence spectra of amphiphilic aluminum (III) phthalocyanine disulfonate chloride adjacent isomer (Al-2), hydrophilic aluminum (III) phthalocyanine chloride tetrasulfonic acid (Al-4), and lipophilic 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH) are compared in a liposomal confined state with free PS in bulk solution. For fluorescence measurements, a broad range of concentrations of both bulk and liposomal confined PSs are examined to track the transition from monomers to dimers or higher order aggregates. Epifluorescence microscopy, absorbance, and fluorescence measurements all confirm different localization of the PSs in liposomes, depending on their hydrophilicity. In turn, the localization affects the aggregation of molecules inside the liposome cell model. Data obtained with such cellular models could be useful in optimizing the photochemical properties of photosensitizing drugs based on their structure-dependent interactions with cellular media and subcellular organelles.
The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.