Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1][2][3][4][5][6][7][8][9][10][11]. However technological applications are currently limited by the low mobility of the charge carriers associated with the disorder in these materials [5][6][7][8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10 5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ∼ 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.Light and matter can enter into the strong coupling regime by exchanging photons faster than any competing dissipation processes. This is normally achieved by placing the material in a confined electromagnetic environment, such as a Fabry-Perot (FP) cavity composed of two parallel mirrors that is resonant with an electronic transition in the material. Alternatively, one can use surface plasmon resonances as in this study. Strong coupling leads to the formation of two hybridized light-matter polaritonic states, P+ and P-, separated by the so-called Rabi splitting, as illustrated in Figure 1a. According to quantum electrodynamics, in the absence of dissipation, the Rabi splitting for a single molecule is given bywhere ω is the cavity resonance or transition energy ( the reduced Planck constant), 0 the vacuum permittivity, v the mode volume, d the transition dipole moment of the material and n ph the number of photons present in the system. The last term implies that, even in the dark, the Rabi splitting has a finite value which is due to the interaction with the vacuum electromagnetic field. This vacuum Rabi splitting can be further increased by coupling a large number N of oscillators to the electromagnetic mode since Ω N R ∝ √ N [12]. In this ensemble coupling, in addition to P+ an...
The construction of soft and processable organic material able to display metallic conduction properties-a large density of freely moving charges-is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other hand, single-walled carbon nanotubes can exhibit remarkably low contact resistances with related large currents, but are intrinsically very difficult to isolate and process. Here, we describe the self-assembly of supramolecular organic nanowires between two metallic electrodes, from a solution of triarylamine derivative, under the simultaneous action of light and electric field triggers. They exhibit a combination of large conductivity values (>5 × 10(3) S m(-1)) and a low interface resistance (<2 × 10(-4) Ω m). Moreover, the resistance of nanowires in series with metal interfaces systematically decreases when the temperature is lowered to 1.5 K, revealing an intrinsic metallic behaviour.
Self-doped colloidal quantum dots (CQDs) attract a strong interest for the design of a new generation of low-cost infrared (IR) optoelectronic devices because of their tunable intraband absorption feature in the mid-IR region. However, very little remains known about their electronic structure which combines confinement and an inverted band structure, complicating the design of optimized devices. We use a combination of IR spectroscopy and photoemission to determine the absolute energy levels of HgSe CQDs with various sizes and surface chemistries. We demonstrate that the filling of the CQD states ranges from 2 electrons per CQD at small sizes (<5 nm) to more than 18 electrons per CQD at large sizes (≈20 nm). HgSe CQDs are also an interesting platform to observe vanishing confinement in colloidal nanoparticles. We present lines of evidence for a semiconductor-to-metal transition at the CQD level, through temperature-dependent absorption and transport measurements. In contrast with bulk systems, the transition is the result of the vanishing confinement rather than the increase of the doping level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.