Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent. The representation is learned to capture the variation in the environment generated by the agent's actions; this kind of representation is particularly suitable for robotics and control scenarios. In particular, the low dimension characteristic of the representation helps to overcome the curse of dimensionality, provides easier interpretation and utilization by humans and can help improve performance and speed in policy learning algorithms such as reinforcement learning. This survey aims at covering the state-of-the-art on state representation learning in the most recent years. It reviews different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real). In particular, it highlights how generic learning objectives are differently exploited in the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation learned and summarizes current and future lines of research.
Searching for objects in an indoor environment can be drastically improved if a task-specific visual saliency is available. We describe a method to incrementally learn such an object-based visual saliency directly on a robot, using an environment exploration mechanism. We first define saliency based on a geometrical criterion and use this definition to segment salient elements given an attentive but costly and restrictive observation of the environment. These elements are used to train a fast classifier that predicts salient objects given large-scale visual features. In order to get a better and faster learning, we use an exploration strategy based on intrinsic motivation to drive our displacement in order to get relevant observations. Our approach has been tested on a robot in indoor environments as well as on publicly available RGB-D images sequences. We demonstrate that the approach outperforms several state-of-the-art methods in the case of indoor object detection and that the exploration strategy can drastically decrease the time required for learning saliency.
In the context of visual object search and localization, saliency maps provide an efficient way to find object candidates in images. Unlike most approaches, we propose a way to learn saliency maps directly on a robot, by exploring the environment, discovering salient objects using geometric cues, and learning their visual aspects. More importantly, we provide an autonomous exploration strategy able to drive the robot for the task of learning saliency. For that, we describe the Reinforcement Learning-Intelligent Adaptive Curiosity algorithm (RL-IAC), a mechanism based on IAC (Intelligent Adaptive Curiosity) able to guide the robot through areas of the space where learning progress is high, while minimizing the time spent to move in its environment without learning. We demonstrate first that our saliency approach is an efficient tool to generate relevant object boxes proposal in the input image and significantly outperforms the state-of-the-art EdgeBoxes algorithm. Second, we show that RL-IAC can drastically decrease the required time for learning saliency compared to random exploration.
Searching for objects in an indoor environment can be drastically improved if a task-specific visual saliency is available. We describe a method to learn such an objectbased visual saliency in an intrinsically motivated way using an environment exploration mechanism. We first define saliency in a geometrical manner and use this definition to discover salient elements given an attentive but costly observation of the environment. These elements are used to train a fast classifier that predicts salient objects given large-scale visual features. In order to get a better and faster learning, we use intrinsic motivation to drive our observation selection, based on uncertainty and novelty detection. Our approach has been tested on RGB-D images, is real-time, and outperforms several state-of-the-art methods in the case of indoor object detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.