The present paper offers a review of recent (post-1980) work on amino acid adsorption and thermal reactivity on oxide and sulfide minerals. This review is performed in the general frame of evaluating Bernal's hypothesis of prebiotic polymerization in the adsorbed state, but written from a surface scientist's point of view. After a general discussion of the thermodynamics of the problem and exactly what effects surfaces should have to make adsorbed-state polymerization a viable scenario, we examine some practical difficulties in experimental design and their bearing on the conclusions that can be drawn from extant works, including the relevance of the various available characterization techniques. We then present the state of the art concerning the mechanisms of the interactions of amino acids with mineral surfaces, including results from prebiotic chemistry-oriented studies, but also from several different fields of application, and discuss the likely consequences for adsorption selectivities. Finally, we briefly summarize the data concerning thermally activated amide bond formation of adsorbed amino acids without activating agents. The reality of the phenomenon is established beyond any doubt, but our understanding of its mechanism and therefore of its prebiotic potential is very fragmentary. The review concludes with a discussion of future work needed to fill the most conspicuous gaps in our knowledge of amino acids/mineral surfaces systems and their reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.