A multiplex PCR toxigenic culture approach was designed for simultaneous identification and toxigenic type characterization of Clostridium difficile isolates. Three pairs of primers were designed for the amplification of (i) a species-specific internal fragment of the tpi (triose phosphate isomerase) gene, (ii) an internal fragment of the tcdB (toxin B) gene, and (iii) an internal fragment of the tcdA (toxin A) gene allowing distinction between toxin A-positive, toxin B-positive (A+B+) strains and toxin A-negative, toxin B-positive (A-B+) variant strains. The reliability of the multiplex PCR was established by using a panel of 72 C. difficile strains including A+B+, A-B-, and A-B+ toxigenic types and 11 other Clostridium species type strains. The multiplex PCR assay was then included in a toxigenic culture approach for the detection, identification, and toxigenic type characterization of C. difficile in 1,343 consecutive human and animal stool samples. Overall, 111 (15.4%) of 721 human samples were positive for C. difficile; 67 (60.4%) of these samples contained A+B+ toxigenic isolates, and none of them contained A-B+ variant strains. Fifty (8%) of 622 animal samples contained C. difficile strains, which were toxigenic in 27 (54%) cases, including 1 A-B+ variant isolate. Eighty of the 721 human stool samples (37 positive and 43 negative for C. difficile culture) were comparatively tested by Premier Toxins A&B (Meridian Bioscience) and Triage C. difficile Panel (Biosite) immunoassays, the results of which were found concordant with toxigenic culture for 82.5 and 92.5% of the samples, respectively. The multiplex PCR toxigenic culture scheme described here allows combined diagnosis and toxigenic type characterization for human and animal C. difficile intestinal infections.
A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 72 Clostridium difficile isolates from various hosts, geographic sources, PCR ribotypes, and toxigenic types (determined by PCR targeting tcdA and tcdB genes). MLST was performed by DNA sequence analysis of seven housekeeping genes (aroE, ddl, dutA, tpi, recA, gmk, and sodA). The number of alleles ranged from five (dutA and ddl) to eleven (recA). Allelic profiles allowed the definition of 34 different sequence types (STs). These STs lacked correlation with geographic source but were well correlated to toxigenic type. The dendrogram generated from a matrix of pairwise genetic distances showed that animal isolates did not constitute a distinct lineage from human isolates and that there was no hypervirulent lineage within the population of toxigenic human isolates (isolates recovered from pseudomembranous colitis and antibioticassociated diarrhea did not cluster in distinct lineages). However, A ؊ B ؉ variant isolates shared the same ST that appeared as a divergent lineage in the population studied, indicating a single evolutionary origin. The population structure was further examined by analysis of allelic polymorphism. The dendrogram generated from composite sequence-based analysis revealed a homogeneous population associated with three divergent lineages, one of which was restricted to A ؊ B ؉ variant isolates. C. difficile exhibited a clonal population structure, as revealed by the estimation of linkage disequilibrium (Ia) between loci. The analysis of alleles within clonal complexes estimated that point mutation generated new alleles at a frequency eightfold higher than recombinational exchange, and the congruence of the dendrograms generated from separate housekeeping loci confirmed the mutational evolution of this species.
Two Bifidobacterium strains contained in two different fermented milks behave very differently when exposed to an in vitro simulated gastric environment. One strain survives very well during at least 90 min (greater than 10(7)/g), but the second strain studied is much less resistant. These in vitro results, with slight differences, were confirmed by an in vivo study in humans. The assessment of the gastric emptying rate of these products allows an estimation of the amount of Bifidobacterium that may pass into the small intestine.
The discrimination between Staphylococcus epidermidisstrains that contaminate and infect blood cultures is a daily challenge for clinical laboratories. The results of PCR detection of putative virulence genes were compared for contaminating strains, sepsis-related strains, catheter strains, and saprophytic strains. Multiplex PCR was used to explore the atlE gene, which is involved in initial adherence, the intercellular adhesion gene cluster (ica), which mediates the formation of the biofilm, and the agrA,sarA, and mecA genes, which might contribute to the pathogenicity of S. epidermidis. Whereas theatlE, agrA, and sarA genes were almost ubiquitously amplified, the ica and mecAgenes were detected significantly more in infecting strains than in contaminating strains (P ≤ 0.02) and thus appeared to be related to the potential virulence of S. epidermidis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.