We present here a tectonic-geodynamic model for the generation and flow of partially molten rocks and magmatism during the Variscan orogenic evolution from the Silurian to the late Carboniferous based on a synthesis of geological data from the French Massif Central. Eclogite facies metamorphism of mafic and ultramafic rocks records the subduction of the Gondwana hyperextended margin. Part of these eclogites are forming boudins-enclaves in felsic HP granulite facies migmatites partly retrogressed into amphibolite facies attesting for continental subduction followed by thermal relaxation and decompression. We propose that HP partial melting has triggered mechanical decoupling of the partially molten continental rocks from the subducting slab. This would have allowed buoyancy-driven exhumation and entrainment of pieces of oceanic lithosphere and subcontinental mantle. Geochronological data of the eclogite-bearing HP migmatites points to diachronous emplacement of distinct nappes from middle to late Devonian. These nappes were thrusted onto metapelites and orthogneisses affected by MP/MT greenschist to amphibolite facies metamorphism reaching partial melting attributed to the late Devonian to early Carboniferous thickening of the crust. The emplacement of laccoliths rooted into strike-slip transcurrent shear zones capped by low-angle detachments from c. 345 to c. 310 Ma is concomitant with the southward propagation of the Variscan deformation front marked by deposition of clastic sediments in foreland basins. These features reflect the horizontal growth of the Variscan belt and the formation of an orogenic plateau by gravity-driven lateral flow of the partially molten orogenic root. The diversity of the magmatic rocks points to various crustal sources with modest, but systematic mantle-derived input. In the eastern French Massif Central, the southward decrease in age of the mantle- and crustal-derived plutonic rocks from c. 345 Ma to c. 310 Ma suggests southward retreat of a northward subducting slab toward the Paleothethys free boundary. Late Carboniferous destruction of the Variscan belt is dominantly achieved by gravitational collapse accommodated by the activation of low-angle detachments and the exhumation-crystallization of the partially molten orogenic root forming crustal-scale LP migmatite domes from c. 305 Ma to c. 295 Ma, coeval with orogen-parallel flow in the external zone. Laccoliths emplaced along low-angle detachments and intrusive dykes with sharp contacts correspond to the segregation of the last melt fraction leaving behind a thick accumulation of refractory LP felsic and mafic granulites in the lower crust. This model points to the primordial role of partial melting and magmatism in the tectonic-geodynamic evolution of the Variscan orogenic belt. In particular, partial melting and magma transfer (i) triggers mechanical decoupling of subducted units from the downgoing slab and their syn-orogenic exhumation; (ii) the development of an orogenic plateau by lateral flow of the low-viscosity partially molten crust; and, (iii) the formation of metamorphic core complexes and domes that correspond to post-orogenic exhumation during gravitational collapse. All these processes contribute to differentiation and stabilisation of the orogenic crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.