Low-intensity transcranial ultrasound (TUS) can non-invasively modulate human neural activity. We investigated how different fundamental sonication parameters influence the effects of TUS on the motor cortex (M1) of 16 healthy subjects by probing cortico-cortical excitability and behaviour. A low-intensity 500 kHz TUS transducer was coupled to a transcranial magnetic stimulation (TMS) coil. TMS was delivered 10 ms before the end of TUS to the left M1 hotspot of the first dorsal interosseous muscle. Varying acoustic parameters (pulse repetition frequency, duty cycle and sonication duration) on motor-evoked potential amplitude were examined. Paired-pulse measures of cortical inhibition and facilitation, and performance on a visuomotor task was also assessed. TUS safely suppressed TMS-elicited motor cortical activity, with longer sonication durations and shorter duty cycles when delivered in a blocked paradigm. TUS increased GABAA-mediated short-interval intracortical inhibition and decreased reaction time on visuomotor task but not when controlled with TUS at near-somatosensory threshold intensity.
In the mammalian brain, form and motion are processed through two distinct pathways at early stages of visual processing. However, recent evidence suggests that these two pathways may interact. Here we used dynamic Glass patterns, which have been previously shown to create the perception of coherent motion in humans, despite containing no motion coherence. Glass patterns are static stimuli that consist of randomly positioned dot pairs that are integrated spatially to create the perception of a global form, whereas dynamic Glass patterns consist of several independently generated static Glass patterns presented sequentially. In the current study, we measured the detection threshold of five types of dynamic Glass patterns and compared the rank order of the detection thresholds with those found for static Glass patterns and real motion patterns (using random dot stimuli). With both the static Glass patterns and dynamic Glass patterns, detection thresholds were lowest for concentric and radial patterns and highest for horizontal patterns. We also found that vertical patterns were better detected than horizontal patterns, consistent with prior evidence of a "horizontal effect" in the perception of natural scene images. With real motion, detection thresholds were equivalent across all patterns, with the exception of higher thresholds for spiral patterns. Our results suggest that dynamic Glass patterns are processed primarily as form prior to input into the motion system.
A BS TRACT: Background: Local field potentials (LFPs) represent the summation of periodic (oscillations) and aperiodic (fractal) signals. Although previous studies showed changes in beta band oscillations and burst characteristics of the subthalamic nucleus (STN) in Parkinson's disease (PD), how aperiodic activity in the STN is related to PD pathophysiology is unknown.Objectives: The study aimed to characterize the longterm effects of STN-deep brain stimulation (DBS) and dopaminergic medications on aperiodic activities and beta bursts. Methods: A total of 10 patients with PD participated in this longitudinal study. Simultaneous bilateral STN-LFP recordings were conducted in six separate visits during a period of 18 months using the Activa PC + S device in the off and on dopaminergic medication states. We used irregular-resampling auto-spectral analysis to separate oscillations and aperiodic components (exponent and offset) in the power spectrum of STN-LFP signals in beta band.Results: Our results revealed a systematic increase in both the exponent and the offset of the aperiodic spectrum over 18 months following the DBS implantation, independent of the dopaminergic medication state of patients with PD. In contrast, beta burst durations and amplitudes were stable over time and were suppressed by dopaminergic medications. Conclusions: These findings indicate that oscillations and aperiodic activities reflect at least partially distinct yet complementary neural mechanisms, which should be considered in the design of robust biomarkers to optimize adaptive DBS. Given the link between increased gamma-aminobutyric acidergic (GABAergic) transmission and higher aperiodic activity, our findings suggest that long-term STN-DBS may relate to increased inhibition in the basal ganglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.