International audienceSummer mortality of Pacific oysters is known in several countries. However no specific pathogen has been systematically associated with this phenomenon. A complex combination of environmental and biological parameters has been suggested as the cause and is now starting to be identified. A high genetic basis was found for survival in oysters when a first generation (G1) was tested in three sites during summer. This paper presents a synthesis on physiological characteristics of two selected groups (‘R' and ‘S', from families selected for resistance and susceptibility to summer mortality respectively), of the second and third generations. R and S showed improvement or reduction of survival compared with the control in both field and laboratory trials confirming the high heritability of survival of juveniles <1 year old. Interestingly, no correlation was observed between growth and survival. Comparison between the two selected groups showed that S oysters invested more energy in reproduction and stayed a longer time without spawning than R oysters which had high synchronous spawning. This was mainly shown with high rather than low dietary rations (respectively 12% and 4% DW algae/DW oyster) in a controlled experiment. Moreover, early partial spawning was detected in S oysters and not R ones in the high dietary ration. S showed a higher respiration rate and an earlier decrease in absorption efficiency than R during gametogenesis, but they were not significantly different in glycogen or ATP utilisation. Two months before a mortality episode, hemocytes from S oysters had a higher adhesive capacity than R hemocytes and significantly higher reactive oxygen species production capacity. One month before mortality, S oysters had the highest hyalinocyte concentration and their expression of genes coding for glucose metabolism enzymes (Hexokinase, GS, PGM, PEPCK) was significantly lower in the labial palps. After a thermal increase from 13 °C to 19 °C, during 8 days in normoxia, S oysters showed a large HSP70 increase under hypoxia contrary to R oysters, suggesting their high susceptibility to stress. Their catalase activity was lower than in R oysters and showed no further change to subsequent hypoxia and pesticide stresses, in contrast to R oysters. These observations suggest possible links between higher reproductive effort in S oysters, their specific stress response to temperature and hypoxia, ROS production, partial spawning, hyalinocyte increase and the infection process. To compare R and S oysters in a more integrated way, a suppression subtractive hybridisation (SSH) library and a micro-array strategy are being undertaken
International audienceThe impact of diets upon the fatty acid composition of haemocyte polar lipids and consequently upon immune parameters has been tested in the oyster Crassostrea gigas and the clam Ruditapes philippinarum. Oysters and clams were fed each of three cultured algae: Chaetoceros calcitrans, which is rich in 20:5(n-3) and 20:4(n-6) and poor in 22:6(n-3) fatty acids; T-Iso (Isochrysis sp.), which is rich in 22:6(n-3) and deficient in 20:5(n-3) and 20:4(n-6); and Tetraselmis suecica, which is deficient in 22:6(n-3) and contains only small amounts of 20:5(n-3) and 20:4(n-6). Fatty acid composition of haemocyte polar lipids was greatly affected by the diet. Oysters and clams fed C. calcitrans maintained a higher proportion of 20:5(n-3) and 20:4(n-6) in their haemocyte polar lipids, while these polyunsaturated fatty acids decreased drastically for animals fed T-Iso. However, the T-Iso diet maintained 22:6(n-3) in haemocyte polar lipids of both species. Higher 20:5(n-3) and 20:4(n-6) contents in diets appeared to have a positive effect upon total haemocyte count, granulocyte percentage, phagocytic rate and oxidative activity of clam haemocytes. Similarly, a positive effect of 20:5(n-3) on oxidative activity of oyster haemocytes was observed but to a lesser extent than in clams. Interestingly, when oyster haemocytes are submitted to a stressful condition, a positive effect of a higher dietary 22:6(n-3) content on the phagocytic rate was noticed
Summer mortality has been reported in the Pacific oyster, Crassostrea gigas, for many years in different parts of the world. The causes of this phenomenon are complex. The multidisciplinary program "MOREST", coordinated by IFREMER, was initiated to understand the causes of summer mortality of Crassostrea gigas juveniles in France and to reduce its impact on oyster production. Within this program, three successive groups of bi-parental families were bred in a hatchery in 2001 and placed in the field during summer in three sites (Ronce, Rivière d'Auray, and Baie des Veys). This paper reports the relative importance of family, site and field placement timing for three characters of major importance for oyster production: survival, growth, and yield. At the end of the summer period, significant differences for the three characters were observed among sites and families for each group. Family effect was the largest variance component for survival, representing 46% of the total. Variance component analysis revealed that variation in yield among families depended either on survival or on growth according to the site. Significant family × environment interactions were observed for yield and survival but not for growth. No difference in survival was found among groups in the three sites at the end of the experiment, but a critical period of mortality was identified from late July until early September. The influence of environmental conditions, notably on reproductive allocation and its relationship with the studied traits, is discussed.
Summer mortality associated with juveniles of the oyster Crassostrea gigas is probably the result of a complex interaction between the host, pathogens and environmental factors. Genetic variability in the host appears to be a major determinant in its sensitivity to summer mortality. Previously, divergent selection criteria based on summer survival have been applied to produce oyster families with resistant and susceptible progeny. In this paper, we describe the use of suppression subtractive hybridization to generate 150 C. gigas clones that were differentially regulated between resistant and susceptible F2 progeny. The nucleotide sequence of these clones was determined. In 28%, the inferred amino sequence was found to match the products of known genes, 14% matched hypothetical proteins and a further 14% appeared to contain open reading frames (ORFs) whose product had no obvious homologue in the nucleotide databases. It has been hypothesized that differences exist in the level of energy generation and immune function between resistant and susceptible progeny. In light of this, clones encoding homologues of cavortin, cyclophilin, isocitrate dehydrogenase, sodium glucose cotransporter, fatty acid binding protein, ATPase H+ transporting lysosomal protein, precerebellin, and scavenger receptor were analyzed by real-time PCR. These transcripts were induced in resistant progeny when compared to their susceptible counterparts. A bacterial challenge of oysters resulted in the suppression of six of these transcripts in only those that were resistant to summer mortality. This study has identified potential candidates for further investigation into the functional basis of resistance and susceptibility to summer mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.