To identify therapeutic targets in acute myeloid leukemia (AML), we chemically interrogated 200 sequenced primary specimens. Mubritinib, a known ERBB2 inhibitor, elicited strong anti-leukemic effects in vitro and in vivo. In the context of AML, mubritinib functions through ubiquinone-dependent inhibition of electron transport chain (ETC) complex I activity. Resistance to mubritinib characterized normal CD34 + hematopoietic cells and chemotherapy-sensitive AMLs, which displayed transcriptomic hallmarks of hypoxia. Conversely, sensitivity correlated with mitochondrial function-related gene expression levels and characterized a large subset of chemotherapy-resistant AMLs with oxidative phosphorylation (OXPHOS) hyperactivity. Altogether, our work thus identifies an ETC complex I inhibitor and reveals the genetic landscape of OXPHOS dependency in AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.