Purpose:To establish a panel of human breast cancer (HBC) xenografts in immunodeficient mice suitable for pharmacologic preclinical assays. Experimental Design: 200 samples of HBCs were grafted into Swiss nude mice. Twenty-five transplantable xenografts were established (12.5%). Their characterization included histology, p53 status, genetic analysis by array comparative genomic hybridization, gene expression by Western blotting, and quantitative reverse transcription-PCR. Biological profiles of nine xenografts were compared with those of the corresponding patient's tumor. Chemosensitivities of 17 xenografts to a combination of Adriamycin and cyclophosphamide (AC), docetaxel, trastuzumab, and Degarelix were evaluated. Results: Almost all patient tumors established as xenografts displayed an aggressive phenotype, i.e., high-grade, triple-negative status. The histology of the xenografts recapitulated the features of the original tumors. Mutation of p53 and inactivation of Rb and PTEN proteins were found in 83%, 30%, and 42% of HBC xenografts, respectively. Two HBCx had an ERBB2 (HER2) amplification. Large variations were observed in the expression of HER family receptors and in genomic profiles. Genomic alterations were close to those of original samples in paired tumors. Three xenografts formed lung metastases. A total of 15 of the 17 HBCx (88%) responded to AC, and 8 (47%) responded to docetaxel. One ERBB2-amplified xenograft responded to trastuzumab, whereas the other did not. The drug response of HBC xenografts was concordant with that of the patient's tumor in five of seven analyzable cases. Breast cancer is one of the most frequently diagnosed types of cancer in women and a leading cause of cancer-related death in women. The incidence of breast cancer has increased by twothirds over the last 15 years. However, mortality has decreased by one-third due to the earlier detection of breast cancer and increasing use of systemic therapies. Recently, new chemotherapy agents and molecular targeted therapies, such as trastuzumab, have provided a real hope of decreasing breast cancer mortality. However, despite appropriate adjuvant systemic therapy, up to 30% of patients will relapse. The vast majority of deaths are caused by recurrent metastatic disease. To date, patients relapsing will frequently have received multiple therapies in the adjuvant setting (anthracycline-taxane -based chemotherapy, hormonotherapy, and trastuzumab in case of ERBB2 amplification). Therefore, it is clear that novel compounds are required in the metastatic setting. Considering the numerous compounds produced by pharmaceutical companies, we need new tools to speed up clinical development and to take into account the heterogeneity of the disease. Preclinical models are one potential solution. A preclinical screening step in drug development must predict not only the antitumoral activity of new compounds, but also in which tumor type or subtype the compound will be effective. The preclinical models presently used are not predictive enou...
Activating mutations in NOTCH1, an essential regulator of T cell development, are frequently found in human T cell acute lymphoblastic leukemia (T-ALL). Despite important advances in our understanding of Notch signal transduction, the regulation of Notch functions in the nucleus remains unclear. Using immunoaffinity purification, we identified NOTCH1 nuclear partners in T-ALL cells and showed that, beyond the well-characterized core activation complex (ICN1-CSL-MAML1), NOTCH1 assembles a multifunctional complex containing the transcription coactivator AF4p12, the PBAF nucleosome remodeling complex, and the histone demethylases LSD1 and PHF8 acting through their demethylase activity to promote epigenetic modifications at Notch-target genes. Remarkably, LSD1 functions as a corepressor when associated with CSL-repressor complex and as a NOTCH1 coactivator upon Notch activation. Our work provides new insights into the molecular mechanisms that govern Notch transcriptional activity and represents glimpse into NOTCH1 interaction landscape, which will help in deciphering mechanisms of NOTCH1 functions and regulation.
We have studied 52 new HHV8 strains by sequencing the complete hypervariable K1 gene and genotyping the K14.1/K15 loci located at both sides, respectively, of the viral genome. The samples originated from 49 patients with Kaposi's sarcoma (KS; 32 patients), multicentric Castleman's disease (MCD; 12 patients), or primary effusion lymphoma (PEL; 5 patients). Among these patients, 32 were of African origin (West and Central African countries and Creoles from French Guiana) and the 17 others were mostly French homosexuals. Comprehensive phylogenetic studies allowed the identification of distinct groups within the three already known main subtypes. Interestingly, two new sequences that did not cluster within a known subtype or group could be considered as prototypes of early/ancient variants of the C subtype and A/C set, respectively. Among the 32 African strains, the majority were either of the B subtype (13 cases) or of the A5 group (11 cases), indicating that this latter genotype is frequent and widespread in Africa. In contrast, a subtype C strain infected most of the 17 other patients. PCR-based genotyping of the K14.1/K15 loci revealed an overall predominance of P subtype, except in the A5 and B K1 groups, in which the P and M alleles were equally represented. The implications of these data on the evolution and spread of HHV8 among human African populations are discussed.
Poly(ADP‐ribose) polymerase (PARP) inhibitors (PARPi) are effective in cancers with defective homologous recombination DNA repair (HRR), including BRCA1/2‐related cancers. A test to identify additional HRR‐deficient tumors will help to extend their use in new indications. We evaluated the activity of the PARPi olaparib in patient‐derived tumor xenografts (PDXs) from breast cancer (BC) patients and investigated mechanisms of sensitivity through exome sequencing, BRCA1 promoter methylation analysis, and immunostaining of HRR proteins, including RAD51 nuclear foci. In an independent BC PDX panel, the predictive capacity of the RAD51 score and the homologous recombination deficiency (HRD) score were compared. To examine the clinical feasibility of the RAD51 assay, we scored archival breast tumor samples, including PALB2‐related hereditary cancers. The RAD51 score was highly discriminative of PARPi sensitivity versus PARPi resistance in BC PDXs and outperformed the genomic test. In clinical samples, all PALB2‐related tumors were classified as HRR‐deficient by the RAD51 score. The functional biomarker RAD51 enables the identification of PARPi‐sensitive BC and broadens the population who may benefit from this therapy beyond BRCA1/2‐related cancers.
Obtaining representative human colon cancer cell lines from
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.