Argumentation has been an important topic in knowledge representation, reasoning and multi-agent systems during the last twenty years. In this paper, we propose a new abstract framework where arguments are associated with a strength, namely a quantitative information which is used to determine whether an attack between arguments succeeds or not. Our Strength-based Argumentation Framework (StrAF) combines ideas of Preference-based and Weighted Argumentation Frameworks in an original way, which permits to define acceptability semantics sensitive to the existence of accruals between arguments. The question of accruals arises in situations where several arguments defending the same position (but from different points of view) against another argument are unable to individually defeat this argument, but could do it collectively if they combine their strengths. We investigate some of the theoretical and computational properties of our new framework and semantics, and present a reasoning algorithm that is based on a translation of the problem into pseudo-boolean constraint satisfaction. This paper proposes an intuitive framework which allows strength compensations in an argumentation context where attacks may not succeed, completed by an approach which detects accruals throughout the reasoning process without requiring the elicitation of all compensatory combinations of arguments as an input.
This paper addresses the issue of the dynamic enforcement of a constraint in an argumentation system. The system consists in (1) an argumentation framework, made up, notably, of a set of arguments and of an attack relation, (2) an evaluation semantics, and (3) the evaluation result, computed from (1) and (2). An agent may want another agent to consider a new attack, or to have a given argument accepted, or even to relax the definition of the semantics. A constraint on any of the three components is thus defined, and it has to be enforced in the system. The enforcement may result in changes on components of the system. The paper surveys existing approaches for the dynamic enforcement of a constraint and its consequences, and reveals challenging enforcement cases that remain to be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.