H. 2005. Linking moose habitat selection to limiting factors. Á/ Ecography 28: 619 Á/628.It has been suggested that patterns of habitat selection of animals across spatial scales should reflect the factors limiting individual fitness in a hierarchical fashion. Animals should thus select habitats that permit avoidance of the most important limiting factor at large spatial scales while the influence of less important factors should only be evident at fine scales. We tested this hypothesis by investigating moose Alces alces habitat selection using GPS telemetry in an area where the main factors limiting moose numbers were likely (in order of decreasing importance) predation risk, food availability and snow. At the landscape scale, we predicted that moose would prefer areas where the likelihood of encountering wolves was low or areas where habitats providing protection from predation were dominant. At the home-range scale, we predicted that moose selection would be driven by food availability and snow depth. Wolf territories were delineated using telemetry locations and the study area was divided into 3 sectors that differed in terms of annual snowfall. Vegetation surveys yielded 6 habitat categories that differed with respect to food availability, and shelter from predation or snow. Our results broadly supported the hypothesis because moose reacted to several factors at each scale. At the landscape scale, moose were spatially segregated from wolves by avoiding areas receiving the lowest snowfall, but they also preferentially established their home range in areas where shelter from snow bordered habitat types providing abundant food. At the home-range scale, moose also traded off food availability with avoidance of deep snow and predation risk. During winter, moose increased use of stands providing shelter from snow along edges with stands providing abundant food. Habitat selection patterns of females with calves differed from that of solitary moose, the former being associated primarily with habitats providing protection from predation. Animals should attempt to minimize detrimental effects of the main limiting factors when possible at the large scale. However, when the risk associated with several potential limiting factors varies with scale, we should expect animals to make trade-offs among these.
The George River caribou herd in northern QuebeclLabrador increased from about 5000 animals in 1954 to 472 200 (or 1.1 caribou.km.') prior to the 1984 calving season. The range used by the herd expanded from 160 O00 to 442 O00 km2 for the period 1971-84. The exponential rate of increase (r) was estimated at O. 11 in the 1970s. Calkfemale ratio in autumn was relatively constant (x = 0.52) from 1973 to 1983, but decreased to about 0.39 in 1984-86. The harvest rate was relatively low in the 1970s (about 3%.yr"), but seemingly increased in the mid-1980s to 5-7% as a result of more liberal regulations and a greater impetus to exploit caribou for subsistence. The cumulative impact of lower calf recruitment and more intensive hunting may have appreciably depressed the growth rate of the herd in 1984-86. A greater year-round competition for food resources and a greater energy expenditure associated with range expansion are presented as probable regulatory factors for the George River herd. It is argued that the nature of caribou-habitat interactions in continental regions generate long-term fluctuations in caribou numbers if human exploitation remains low. At present, wolf predation does not appear to be an important mortality factor capable of regulating the George River herd.
Summary1. The density of large herbivores is a major driver of forest ecosystem structure and function in conjunction with episodic disturbances, especially in forests with a regeneration strategy based on shade-tolerant seedlings capable of re-establishing canopy dominance (advance regeneration). Yet, uncertainty about the relationships between forest regeneration, herbivore density and other disturbances makes it difficult to set population goals. Using an innovative controlled browsing experiment, we investigated the relationships between the regeneration dynamics of balsam fir Abies balsamea , the density of white-tailed deer Odocoileus virginianus and timber harvesting. 2. We hypothesize that advance tree regeneration either: (i) recovers approximately linearly as deer density is reduced; (ii) recovers exponentially; or (iii) does not recover because factors other than browsing control advance regeneration. We tested these alternatives through manipulation of deer densities (0, 7·5, 15 deer km − 2 and in situ local densities) and forest cover (clearcut and uncut forest). 3. Balsam fir seedling mortality decreased exponentially with decreasing deer density in clearcut and approximately linearly in uncut forest. Independently of deer density, the recruitment of seedlings in clearcut dropped from 56 ± 5% to 7 ± 1% within 3 years. 4. Seedling growth increased exponentially with decreasing deer density in clearcut whereas no height growth was observed in uncut forest. 5. Overall, the abundance of fir saplings recovered exponentially in clearcut but remained low and independent of deer density in uncut forest. The abundance of spruce Picea spp. saplings was unrelated to deer density and increased with time. 6. Synthesis and applications . Forest disturbance from selective browsing at high deer densities over an extended period of time leads to recruitment failure following a canopy disturbance such as a clearcut. Indirect competitive advantage given to species resistant to browsing can shift forest composition. Nonlinear relationships between fir regeneration and deer densities imply that the level of culling required to reach herbivore densities compatible with natural regeneration of native forest is larger than expected if tree regeneration was proportional to deer density. In the boreal forest of Anticosti Island, local densities < 15 deer km − 2 achieved within 3 years following clearcut are compatible with the maintenance of native forest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.