The Midwest region in Brazil has the largest and most recent agricultural frontier in the country where there is no currently detailed soil information to support the agricultural intensification. Producing large-extent digital soil maps demands a huge volume of data and high computing capacity. This paper proposed mapping surface and subsurface key soil attributes with 30 m-resolution in a large area of Midwest Brazil. These soil maps at multiple depth increments will provide adequate information to guide land use throughout the region. The study area comprises about 851,000 km2 in the Cerrado biome (savannah) in the Brazilian Midwest. We used soil data from 7908 sites of the Brazilian Soil Spectral Library and 231 of the Free Brazilian Repository for Open Soil Data. We selected nine key soil attributes for mapping and aggregated them into three depth intervals: 0–20, 20–60 and 60–100 cm. A total of 33 soil predictors were prepared using Google Earth Engine (GEE), such as climate and geologic features with 1 km-resolution, terrain and two new covariates with 30 m-resolution, based on satellite measurements of the topsoil reflectance and the seasonal variability in vegetation spectra. The scorpan model was adopted for mapping of soil variables using random forest regression (RF). We used the model-based optimization by tuning RF hyperparameters and calculated the scaled permutation importance of covariates in R software. Our results were promising, with a satisfactory model performance for physical and chemical attributes at all depth intervals. Elevation, climate and topsoil reflectance were the most important covariates in predicting sand, clay and silt. In general, for predicting soil chemical attributes, climatic variables, elevation and vegetation reflectance provided to be the most important of predictive components, while for organic matter it was a combination of climatic dynamics and reflectance bands from vegetation and topsoil. The multiple depth maps showed that soil attributes largely varied across the study area, from clayey to sandy, suggesting that less than 44% of the studied soils had good natural fertility. We concluded that key soil attributes from multiple depth increments can be mapped using Earth observations data and machine learning methods with good performance.
Geotechnologies allow natural resources to be surveyed more quickly and cheaply than traditional methods. This paper aimed to produce a digital soil map (DSM) based on Landsat time series data. The study area, located in the eastern part of the Brazilian Federal District (Rio Preto hydrographic basin), comprises a representative basin of the Central Brazil plateau in terms of pedodiversity. A spectral library was produced based on the soil spectroscopy (from the visible to shortwave infrared spectral range) of 42 soil samples from 0–15 cm depth using the Fieldspec Pro equipment in a laboratory. Pearson’s correlation and principal component analysis of the soil attributes revealed that the dataset could be grouped based on the texture content. Hierarchical clustering analysis allowed for the extraction of 13 reference spectra. We interpreted the spectra morphologically and resampled them to the Landsat 5 Thematic Mapper satellite bands. Afterward, we elaborated a synthetic soil/rock image (SySI) and a soil frequency image (number of times the bare soil was captured) from the Landsat time series (1984–2020) in the Google Earth Engine platform. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to model the SySI, using the endmembers as the input and generating a DSM, which was validated by the Kappa index and the confusion matrix. MESMA successfully modeled 9 of the 13 endmembers: Dystric Rhodic Ferralsol (clayic); Dystric Rhodic Ferralsol (very clayic); Dystric Haplic Ferralsol (loam-clayic); Dystric Haplic Ferralsol (clayic); Dystric Petric Plinthosol (clayic); Dystric Petric Plinthosol (very clayic); Dystric Regosol (clayic); Dystric Regosol (very clayic); and Dystric, Haplic Cambisol (clayic). The root mean squared error (RMSE) varied from 0 to 1.3%. The accuracy of DSM achieved a Kappa index of 0.74, describing the methodology’s effectiveness to differentiate the studied soils.
Pedological maps in suitable scales are scarce in most countries due to the high costs involved in soil surveying. Therefore, methods for surveying and mapping must be developed to overpass the cartographic material obtention. In this sense, this work aims at assessing a digital soil map (DSM) built by multispectral data extrapolation from a source area to a target area using the ASTER time series modeling technique. For that process, eight representative toposequences were established in two contiguous micro-watersheds, with a total of 42 soil profiles for analyses and classification. We found Ferralsols, Plinthosols, Regosols, and a few Cambisols, Arenosols, Gleisols, and Histosols, typical of tropical regions. In the laboratory, surface soil samples were submitted to spectral readings from 0.40 µm to 2.50 µm. The soil spectra were morphologically interpreted, identifying shapes and main features typical of tropical soils. Soil texture grouped the curves by cluster analysis, forming a spectral library (SL). In parallel, an ASTER time series (2001, 2004, and 2006) was processed, generating a bare soil synthetic soil image (SySI) covering 39.7% of the target area. Multiple Endmember Spectral Mixture Analysis modeled the SL on the SySI generating DSM with 73% of Kappa index, in which identified about 77% is covered by rhodic Ferralsols. Besides the overestimation, the DSM represented the study area’s pedodiversity. Given the discussion raised, we consider including subsoil data and other features using other sensors in operations modeled by machine learning algorithms to improve results.
RESUMOO advento das geotecnologias impulsionou o desenvolvimento de estudos socioambientais, uma vez que simplifica e facilita relações entre vários fatores intrínsecos à essa área. Tendo em vista esse aspecto, realizou-se um processamento de dados a partir de Sistemas de Informações Geográficas, a fim de realizar o mapeamento do uso e ocupação de solo na bacia do rio Verruga, Localizado no sudoeste da Bahia, um importante afluente da região que sofre constantes impactos referentes ás atividades antrópicas. Para tanto, foram analisadas imagens orbitais do sensor OLI datadas nos períodos de agosto, setembro e outubro de 2015, com orbitas/pontos 217/070, 216/070 e 216/071, respectivamente. A partir da composição falsa-cor R5B4G3, que realça as feições dos alvos de interesse, foram segmentadas em classes de uso e ocupação do solo. Para a análise da qualidade dos resultados, pontos de controle foram randomizados em uma grade e posteriormente verificados em campo. Com a aplicação do índice Kappa, foi alcançado um valor de 0,73 o que representa a capacidade da metodologia de classificação supervisionada pela técnica de máxima verossimilhança em predizer as características espectrais das classes determinadas, porém, com algumas limitações devido à qualidade dos dados utilizados. PALAVRAS-CHAVE: Bacia Hidrográfica, Planejamento, Sensoriamento Remoto. USE AND LAND OCCUPATION MAPPING IN VERRUGA RIVER WATERSHED -BAABSTRACT The advent of geotechnology boosted the development of social and environmental studies, as it simplifies and facilitates relations between several intrinsic factors to this area. having appearance in view of this, there was hum data processing from Geographic Information Systems, in order to accomplish of use and Occupancy Mapping the Basin of the Verruga River in Southwest Bahia, an important tributary of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.