Lepton colliders are considered as options to complement and to extend the physics programme at the Large Hadron Collider. The Compact Linear Collider (CLIC) is an e + e − collider under development aiming at centre-of-mass energies of up to 3 TeV. For experiments at CLIC, a hadron sampling calorimeter with tungsten absorber is proposed. Such a calorimeter provides sufficient depth to contain high-energy showers, while allowing a compact size for the surrounding solenoid. A fine-grained calorimeter prototype with tungsten absorber plates and scintillator tiles read out by silicon photomultipliers was built and exposed to particle beams at CERN. Results obtained with electrons, pions and protons of momenta up to 10 GeV are presented in terms of energy resolution and shower shape studies. The results are compared with several GEANT4 simulation models in order to assess the reliability of the Monte Carlo predictions relevant for a future experiment at CLIC.
Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeterTo cite this article: C Adloff et al 2013 JINST 8 P09001 View the article online for updates and enhancements.
Related contentThe time structure of hadronic showers in highly granular calorimeters with tungsten and steel absorbers C Adloff, J -J Blaising, M Chefdeville et al.
-Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter C Adloff, J Blaha, J -J Blaising et al.
-Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques C Adloff, J Blaha, J -J Blaising et al.
JINST 8 P09001ABSTRACT: We investigate the three dimensional substructure of hadronic showers in the CAL-ICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.
The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.