Oceanic mesoscale circulation is a crucial structuring force in the marine environment. Dynamic processes associated with eddies, such as eddy-induced upwelling or eddy-eddy interaction, drive the transport and distribution of nutrients that support the whole food chain, presumably through bottom-up processes. Eddies can shape the distribution of organisms at both low (phytoplankton, zooplankton and fish larvae) and high trophic levels (top fish predators, seabirds or turtles), but the impact of mesoscale features on intermediate trophic levels (micronekton) remains poorly understood. We analysed the influence of eddies on the distribution of micronekton aggregations in the Mozambique Channel by combining data from acoustic surveys and satellite sea topography. We demonstrated that large aggregations of micronekton occurred mainly in areas where the local horizontal gradient of sea level anomalies is strong, i.e. at the periphery of eddies. We observed that, in this region, eddies running along the coast advect coastal nutrient-rich waters at their edges, which support the base of the food chain. We propose that eddies can shape the distribution and the aggregation patterns of the prey of marine top predators through bottom-up processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.