Study design: Retrospective study at a unique center. Objective: The aim of this study is twofold, to develop a virtual patients model for lumbar decompression surgery and to evaluate the precision of an artificial neural network (ANN) model designed to accurately predict the clinical outcomes of lumbar decompression surgery. Methods: We performed a retrospective study of complete Electronic Health Records (EHR) to identify potential unfavorable criteria for spine surgery (predictors). A cohort of synthetics EHR was created to classify patients by surgical success (green zone) or partial failure (orange zone) using an Artificial Neural Network which screens all the available predictors. Results: In the actual cohort, we included 60 patients, with complete EHR allowing efficient analysis, 26 patients were in the orange zone (43.4%) and 34 were in the green zone (56.6%). The average positive criteria amount for actual patients was 8.62 for the green zone (SD+/- 3.09) and 10.92 for the orange zone (SD 3.38). The classifier (a neural network) was trained using 10,000 virtual patients and 2000 virtual patients were used for test purposes. The 12,000 virtual patients were generated from the 60 EHR, of which half were in the green zone and half in the orange zone. The model showed an accuracy of 72% and a ROC score of 0.78. The sensitivity was 0.885 and the specificity 0.59. Conclusion: Our method can be used to predict a favorable patient to have lumbar decompression surgery. However, there is still a need to further develop its ability to analyze patients in the “failure of treatment” zone to offer precise management of patient health before spinal surgery.
Outils connectésParmi les nombreux outils connectés existants on trouve des montres, des bracelets, des bagues, des petits boîtiers, des smartphones et divers éléments s'y intégrant. Ceux-ci présentent de nombreux avantages (Tableau IIA). Leur omniprésence facilite la capture d'informations, permettant de mieux suivre et analyser notre mode de vie, de jour comme de nuit, où que nous nous trouvions. Ces objets sont aussi conçus pour communiquer les informations captées en temps réel au système médical, afin que ce dernier les analyse et le cas échéant intervienne. L'un des grands avantages de ces outils connectés est leur faible coût et leur simplicité d'utilisation. À titre d'exemple, les dispositifs actuels requis pour réaliser un ECG ou une échographie sont incomparablement plus onéreux qu'un smartphone, alors que ce dernier peut servir pour réaliser les deux types d'examens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.