With the overwhelming number of older reinforced concrete buildings that need to be assessed for seismic vulnerability in a city, local governments face the question of how to assess their building inventory. By leveraging engineering drawings that are stored in a digital format, a well-established method for classification reinforced concrete buildings with respect to seismic vulnerability, and machine learning techniques, we have developed a technique to automatically extract quantitative information from the drawings to classify vulnerability. Using this technique, stakeholders will be able to rapidly classify buildings according to their seismic vulnerability and have access to information they need to prioritize a large building inventory. The approach has the potential to have significant impact on our ability to rapidly make decisions related to retrofit and improvements in our communities. In the Los Angeles County alone it is estimated that several thousand buildings of this type exist. The Hassan index is adopted here as the method for automation due to its simple application during the classification of the vulnerable reinforced concrete buildings. This paper will present the technique used for automating information extraction to compute the Hassan index for a large building inventory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.