Self-similar solutions to the compressible Euler equations with nonlinear conduction are considered as particular instances of unsteady radiative deflagration – or ‘ablation’ – waves with the goal of characterizing the actual hydrodynamic properties that such flows may present. The chosen family of solutions, corresponding to the ablation of an initially quiescent perfectly cold and homogeneous semi-infinite slab of inviscid compressible gas under the action of increasing external pressures and radiation fluxes, is well suited to the description of the early ablation of a target by gas-filled cavity X-rays in experiments of high energy density physics. These solutions are presently computed by means of a highly accurate numerical method for the radiative conduction model of a fully ionized plasma under the approximation of a non-isothermal leading shock wave. The resulting set of solutions is unique for its high fidelity description of the flows down to their finest scales and its extensive exploration of external pressure and radiative flux ranges. Two different dimensionless formulations of the equations of motion are put forth, yielding two classifications of these solutions which are used for carrying out a quantitative hydrodynamic analysis of the corresponding flows. Based on the main flow characteristic lengths and on standard characteristic numbers (Mach, Péclet, stratification and Froude numbers), this analysis points out the compressibility and inhomogeneity of the present ablative waves. This compressibility is further analysed to be too high, whether in terms of flow speed or stratification, for the low Mach number approximation, often used in hydrodynamic stability analyses of ablation fronts in inertial confinement fusion (ICF), to be relevant for describing these waves, and more specifically those with fast expansions which are of interest in ICF. Temperature stratification is also shown to induce, through the nonlinear conductivity, supersonic upstream propagation of heat-flux waves, besides a modified propagation of quasi-isothermal acoustic waves, in the flow conduction regions. This description significantly departs from the commonly admitted depiction of a quasi-isothermal conduction region where wave propagation is exclusively ascribed to isothermal acoustics and temperature fluctuations are only diffused.
The attenuation of two-dimensional boundary-layer instabilities by a finite-length, viscoelastic patch is investigated by means of global linear stability theory. First, the modal stability properties of the coupled problem are assessed, revealing unstable fluid-elastic travelling-wave flutter modes. Second, the Tollmien–Schlichting instabilities over a rigid wall are characterised via the analysis of the fluid resolvent operator in order to determine a baseline for the fluid-structural analysis. To investigate the effect of the elastic patch on the growth of these flow instabilities, we first consider the linear frequency response of the coupled fluid-elastic system to the dominant rigid-wall forcing modes. In the frequency range of Tollmien–Schlichting waves, the energetic flow amplification is clearly reduced. However, an amplification is observed for higher frequencies, associated with travelling-wave flutter. This increased complexity requires the analysis of the coupled fluid-structural resolvent operator; the optimal, coupled, resolvent modes confirm the attenuation of the Tollmien–Schlichting instabilities, while also being able to capture the amplification at the higher frequencies. Finally, a decomposition of the fluid-structural response is proposed to reveal the wave cancellation mechanism responsible for the attenuation of the Tollmien–Schlichting waves. The viscoelastic patch, excited by the incoming rigid-wall wave, provokes a fluid-elastic wave that is out-of-phase with the former, thus reducing its amplitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.