By means of Delta-SCF and time-dependent density functional theory (DFT) calculations on [Ru(LL)3]2+ (LL = bpy = 2,2'-bipyridyl or bpz = 2,2' -bipyrazyl) complexes, we have found that emission of these two complexes could originate from two metal-to-ligand charge-transfer triplet states (3MLCT) that are quasi-degenerate and whose symmetries are D3 and C2. These two states are true minima. Calculated absorption and emission energies are in good agreement with experiment; the largest error is 0.14 eV, which is about the expected accuracy of the DFT calculations. For the first time, an optimized geometry for the metal-centered (MC) state is proposed for both of these complexes, and their energies are found to be almost degenerate with their corresponding 3MLCT states. These [RuII(LL)(eta1-LL)2]2+ MC states have two vacant coordination sites on the metal, so they may react readily with their environment. If these MC states are able to de-excite by luminescence, the associated transition (ca. 1 eV) is found to be quite different from those of the 3MLCT states (ca. 2 eV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.