Let n ≥ 2 be an integer and denote by θn the real root in (0, 1) of the trinomial Gn(X) = −1 + X + Xn. The sequence of Perron numbers $(\theta _n^{ - 1} )_{n \ge 2} $ tends to 1. We prove that the Conjecture of Lehmer is true for $\{ \theta _n^{ - 1} |n \ge 2\} $ by the direct method of Poincaré asymptotic expansions (divergent formal series of functions) of the roots θn, zj,n, of Gn(X) lying in |z| < 1, as a function of n, j only. This method, not yet applied to Lehmer’s problem up to the knowledge of the author, is successfully introduced here. It first gives the asymptotic expansion of the Mahler measures ${\rm{M}}(G_n ) = {\rm{M}}(\theta _n ) = {\rm{M}}(\theta _n^{ - 1} )$ of the trinomials Gn as a function of n only, without invoking Smyth’s Theorem, and their unique limit point above the smallest Pisot number. Comparison is made with Smyth’s, Boyd’s and Flammang’s previous results. By this method we obtain a direct proof that the conjecture of Schinzel-Zassenhaus is true for $\{ \theta _n^{ - 1} |n \ge 2\} $, with a minoration of the house , and a minoration of the Mahler measure M(Gn) better than Dobrowolski’s one. The angular regularity of the roots of Gn, near the unit circle, and limit equidistribution of the conjugates, for n tending to infinity (in the sense of Bilu, Petsche, Pritsker), towards the Haar measure on the unit circle, are described in the context of the Erdős-Turán-Amoroso-Mignotte theory, with uniformly bounded discrepancy functions.
We give an explicit upper bound of the minimal number ν T,n of balls of radius 1 2 which form a covering of a ball of radius T > 1 2 in R n , n ≥ 2. The asymptotic estimates of ν T,n we deduce when n is large are improved further by recent results of Böröczky, Jr. and Wintsche on the asymptotic estimates of the minimal number of equal balls of R n covering the sphere S n−1 . The optimality of the asymptotic estimates is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.