The origin of granites was once a question solely for petrologists and geochemists. But in recent years a consensus has emerged that recognizes the essential role of deformation in the segregation, transport and emplacement of silica-rich melts in the continental crust. Accepted petrological models are being questioned, either because they require unrealistic rheological behaviours of rocks and magmas, or because they do not satisfactorily explain the available structural or geophysical data. Provided flow is continuous, mechanical considerations suggest that--far from being geologically sluggish--granite magmatism is a rapid, dynamic process operating at timescales of < or = 100,000 years, irrespective of tectonic setting.
International audienceIn their late stages of evolution, peraluminous granitic melts exsolve large amounts of fluidswhich can modify the chemical composition of granitic whole-rock samples. The niobium/tantalum (Nb/Ta) ratio is expected to decrease during the magmatic differentiation of graniticmelts, but the behavior of both elements at the magmatic-hydrothermal transition remainsunclear. Using a compilation of whole-rock geochemical data available in the literature, wedemonstrate that fractional crystallization alone is not sufficient to explain the distribution ofNb-Ta in most peraluminous granites. However, we notice that most of the granitic samplesdisplaying evidence of interactions with fluids have Nb/Ta < 5. We propose that the decreaseof the Nb/Ta ratio in evolved melts is the consequence of both fractional crystallization andsub-solidus hydrothermal alteration. We suggest that the Nb/Ta value of ~5 fingerprints themagmatic-hydrothermal transition in peraluminous granites. Furthermore, a Nb/Ta ratio of ~5appears to be a good marker to discriminate mineralized from barren peraluminous granites
[1] We present a model of melt segregation in a mush submitted to both compaction and shear. It applies to a granitic melt imbedded within a partially molten continental crust, able to sustain large stress values. The mathematical derivation starts with the equations for melt and plastic flow in a mush. They are manipulated to obtain equations for the mean flow field and for the separation velocity. Assuming that the mean flow field is simple shear, a specific set of equations for the melt flow in a shear field is obtained. After simplifying the equations, they finally reduce to two systems of coupled equations. One is the wellknown equation for compaction. The other is new and describes melt channelling during shear in a mush with a constant viscosity plastic matrix. Three free parameters are observed. One is the usual compaction length, and the other two are functions of the stress and strain amplitude during shear. Compaction instabilities lead to the development of spherical pockets rich in melt while shear channelling instability segregates melt in parallel veins. The size of the pockets and the distance between veins remain close to the compaction length. Actually, the viscosity ratio between the matrix and its melt controls the compaction length L, which is found metric or submetric. The two types of instability segregate melt. However, the compaction process is generally so sluggish that it cannot compete with the channelling one. The channelling time is controlled by the amount of intergranular melt present in the system and of the amplitude of the shear stresses. During each channelling cycle, lasting for about 30 to 300 kyr, the intergranular melt is completely squeezed out from the volume in between veins. As melting progresses, the successive batches of melt, as well as the residual solid matrix, are increasingly more dehydrated. As a result, both phases progressively stiffen without changing their viscosity contrast and the associated compaction length. The segregation process stops when the dehydration process clamps the deformation of the solid matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.