Urine has become one of the most attractive biofluids in clinical proteomics as it can be obtained non-invasively in large quantities and is stable compared with other biofluids. The urinary proteome has been studied by almost any proteomics technology, but mass spectrometry-based urinary protein and peptide profiling has emerged as most suitable for clinical application. After a period of descriptive urinary proteomics the field is moving out of the discovery phase into an era of validation of urinary biomarkers in larger prospective studies. Although mainly due to the site of production of urine, the majority of these studies apply to the kidney and the urinary tract, but recent data show that analysis of the urinary proteome can also be highly informative on non-urogenital diseases and used in their classification. Despite this progress in urinary biomarker discovery, the contribution of urinary proteomics to the understanding of the pathophysiology of disease upon analysis of the urinary proteome is still modest mainly because of problems associated to sequence identification of the biomarkers. Until now, research has focused on the highly abundant urinary proteins and peptides, but analysis of the less abundant and naturally existing urinary proteins and peptides still remains a challenge. In conclusion, urine has evolved as one of the most attractive body fluids in clinical proteomics with potentially a rapid application in the clinic.
Congenital obstructive nephropathy is the primary cause for end-stage renal disease (ESRD) in children. An increasingly used animal model of obstructive nephropathy is unilateral ureteral obstruction (UUO). This model mimics, in an accelerated manner, the different stages of obstructive nephropathy leading to tubulointerstitial fibrosis: cellular infiltration, tubular proliferation and apoptosis, epithelial-mesenchymal transition (EMT), (myo)fibroblast accumulation, increased extracellular matrix (ECM) deposition, and tubular atrophy. During the last decade genetically modified animals are increasingly used to study the development of obstructive nephropathy. Although the use of these animals (mainly knockouts) has highlighted some pitfalls of this approach (compensation by closely related gene products, absence of temporal knockouts) it has brought important information about the role of specific gene-products in the pathogenesis of obstructive nephropathy. Besides confirming the important pathologic role for angiotensin II (Ang II) and transforming growth factor-beta (TGF-beta) in obstructive nephropathy, these animals have shown the complexity of the development of tubulointerstitial fibrosis involving a large number of closely functionally related molecules. More interestingly, the use of these animals has led to the discovery of unexpected and contradictory roles (both potentially pro- and antifibrotic) for Ang II, for ECM degrading enzymes matrix metalloproteinase 9 (MMP-9) and tissue plasminogen activators (PAs), for plasminogen activator inhibitor 1 (PAI-1), and for the adhesion molecule osteopontin (OPN) in obstructive nephropathy. Further use of these animals, especially in combination with pharmacologic tools, should help to better identify potential antifibrotic strategies in obstructive nephropathy.
Sparked by the article from Lescuyer and colleagues in a recent issue, we aim here to further encourage interest in and discussion of clinically relevant biomarker research. We express our view on proteomics for biomarker discovery by addressing multiple relevant issues, including the inherent differences between biological fluids (and how these differences affect current analytical approaches) and experimental design to maximize the efficiency of moving from the bench to the bedside. Herein, we also include suggestions for definition of the term "biomarker", based on the use of a set of universal characterization/validation requirements, and illustrate several recent examples of successful transitions of benchtop proteomic studies work to clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.