Nicotinic acetylcholine receptors (nAChR) composed of chick alpha7 subunits mutated to threonine at amino acid valine-251 in the putative channel-lining M2 domain were expressed heterologously in several neuron-like and non-neuronal mammalian cell lines. Expression of mutant alpha7-nAChR is toxic to neuron-like cells of the human neuroblastoma cell lines SH-SY5Y and IMR-32, but not to several other cell types. Growth in the presence of the alpha7-nAChR antagonist methyllycaconitine (MLA) protects against neurotoxicity, as does gradual downregulation of functional, mutant alpha7-nAChR in surviving transfected SH-SY5Y cells. Relative to wild-type alpha7-nAChR, functional alpha7-nAChR mutants show a higher affinity for agonists, slower rates of desensitization, and sensitivity to dihydro-beta-erythroidine (DHbetaE) as an agonist, but they retain sensitivity to MLA as a competitive antagonist. These findings demonstrate that expression of hyperfunctional, mutant forms of Ca2+-permeable alpha7-nAChR is toxic to neuron-like cells.
Litomosoides sigmodontis
is a cause of filarial infection in rodents. Once infective larvae overcome the skin barrier, they enter the lymphatic system and then settle in the pleural cavity, causing soft tissue infection. The outcome of infection depends on the parasite's modulatory ability and also on the immune response of the infected host, which is influenced by its genetic background. The goal of this study was to determine whether host factors such as the chemokine axis CXCL12/CXCR4, which notably participates in the control of immune surveillance, can influence the outcome of the infection. We therefore set up comparative analyses of subcutaneous infection by
L. sigmodontis
in two inbred mouse strains with different outcomes: one susceptible strain (BALB/c) and one resistant strain (C57BL/6). We showed that rapid parasite clearance was associated with a
L. sigmodontis
-specific CXCL12-dependent cell response in C57BL/6 mice. CXCL12 was produced mainly by pleural mesothelial cells during infection. Conversely, the delayed parasite clearance in BALB/c mice was neither associated with an increase in CXCL12 levels nor with cell influx into the pleural cavity. Remarkably, interfering with the CXCL12/CXCR4 axis in both strains of mice delayed filarial development, as evidenced by the postponement of the fourth molting process. Furthermore, the
in vitro
growth of stage 4 filariae was favored by the addition of low amounts of CXCL12. The CXCL12/CXCR4 axis thus appears to have a dual effect on the
L. sigmodontis
life cycle: by acting as a host-cell restriction factor for infection, and as a growth factor for worms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.