The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of “deep roots” is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques.
1. There is a fundamental trade-off between leaf traits associated with either resource acquisition or resource conservation. This gradient of trait variation, called the economics spectrum, also applies to fine roots, but whether it is consistent for coarse roots or at the plant community level remains untested. 2. We measured a set of morphological and chemical root traits at a community level (functional parameters; FP) in 20 plant communities located along land-use intensity gradients and across three climatic zones (tropical, mediterranean and montane). We hypothesized (i) the existence of a root economics spectrum in plant communities consistent within root types (fine, < 2 mm; coarse, 2-5 mm), (ii) that variations in root FP occur with soil depths (top 20 cm of soil and 100-150 cm deep) and (iii) along land-use gradients. 3. Root FP covaried, in line with the resource acquisition-conservation trade-off, from communities with root FP associated with resource acquisition (e.g. high specific root length, SRL; thin diameters and low root dry matter contents, RDMC) to root FP associated with resource conservation (e.g. low SRL, thick diameters and high RDMC). This pattern was consistent for both fine and coarse roots indicating a strong consistency of a trade-off between resource acquisition and conservation for plant roots. 4. Roots had different suites of traits at different depths, suggesting a disparity in root function and exploitation capacities. Shallow, fine roots were thinner, richer in nitrogen and with lower lignin concentrations associated with greater exploitation capacities compared to deep, fine roots. Shallow, coarse roots were richer in nitrogen, carbon and soluble concentrations than deep, coarse roots. 5. Fine root parameters of highly disturbed, herbaceous-dominated plant communities in poorer soils were associated with foraging strategies, that is greater SRL and lower RDMC and lignin concentration than those from less disturbed communities. Coarse roots, however, were less sensitive to the land-use gradient. 6. Synthesis. This study demonstrates the existence of a general trade-off in root construction at a community level, which operates within all root types, suggesting that all plant tissues are controlled by the trade-off between resource acquisition and conservation.
Current knowledge gaps are identified and new lines of research for improving our understanding of the processes that drive deep root growth and functioning are proposed. This ultimately leads to a reflection on an alternative paradigm that could be used in the future as a unifying framework to describe and analyse deep rooting. Despite the many hurdles that pave the way to a practical understanding of deep rooting functions, it is anticipated that, in the relatively near future, increased knowledge about the deep rooting traits of a variety of plants and crops will have direct and tangible influence on how we manage natural and cultivated ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.