Background: Robotic technologies for neurological assessment provide sensitive, objective measures of behavioural impairments associated with injuries or disease such as stroke. Previous robotic tasks to assess proprioception typically involve single limbs or in some cases both limbs. The challenge with these approaches is that they often rely on intact motor function and/or working memory to remember/reproduce limb position, both of which can be impaired following stroke. Here, we examine the feasibility of a single-arm Movement Discrimination Threshold (MDT) task to assess proprioception by quantifying thresholds for sensing passive limb movement without vision. We use a staircase method to adjust movement magnitude based on subject performance throughout the task in order to reduce assessment time. We compare MDT task performance to our previously-designed Arm Position Matching (APM) task. Critically, we determine test-retest reliability of each task in the same population of healthy controls. Method: Healthy participants (N = 21, age = 18-22 years) completed both tasks in the End-Point Kinarm robot. In the MDT task the robot moved the dominant arm left or right and participants indicated the direction moved. Movement displacement was systematically adjusted (decreased after correct answers, increased after incorrect) until the Discrimination Threshold was found. In the APM task, the robot moved the dominant arm and participants "mirror-matched" with the non-dominant arm. Results: Discrimination Threshold for direction of arm displacement in the MDT task ranged from 0.1-1.3 cm. Displacement Variability ranged from 0.11-0.71 cm. Test-retest reliability of Discrimination Threshold based on ICC confidence intervals was moderate to excellent (range, ICC = 0.78 [0.52-0.90]). Interestingly, ICC values for Discrimination Threshold increased to 0.90 [0.77-0.96] (good to excellent) when the number of trials was reduced to the first 50. Most APM parameters had ICC's above 0.80, (range, ICC = [0.86-0.88]) with the exception of variability (ICC = 0.30). Importantly, no parameters were significantly correlated across tasks as Spearman rank correlations across parameter-pairings ranged from − 0.27 to 0.30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.