This paper presents a miniature Optogenetics headstage for wirelessly stimulating the brain of rodents with an implanted LED while recording electrophysiological data from a two-channel custom readout. The headstage is powered wirelessly using an inductive link, and is built using inexpensive commercial off-the-shelf electronic components, including a RF microcontroller and a printed antenna. This device has the capability to drive one light-stimulating LED and, at the same time, capture and send back neural signals recorded from two microelectrode readout channels. Light stimulation uses flexible patterns that allow for easy tuning of light intensity and stimulation periods. For driving the LED, a low-pass filtered digitally-generated PWM signal is employed for providing a flexible pulse generation method that alleviates the need for D/A converters. The proposed device can be powered wirelessly into an animal chamber using inductive energy transfer, which enables compact, light-weight and cost-effective smart animal research systems. The device dimensions are 15×25×17 mm; it weighs 7.4 grams and has a data transmission range of more than 2 meters. Different types of LEDs with different power consumptions can be used for this system. The power consumption of the system without the LED is 94.52 mW.
Spatio-spectral and spatio-temporal transfer and intensity propagation of truncated ultrashort-pulsed Bessel-Gauss beams were investigated. Extended needle-shaped focal zones were generated using a compact setup with a reflective small-angle axicon and self-apodized truncation by an adapted aperture. Spectral maps of Bessel-Gauss beams were analyzed on the basis of higher order statistical moments. Compared to focused pulsed Gaussian beams with their spectrally dependent propagation, an ultrabroadband spatio-spectral transfer function was detected over Rayleigh ranges exceeding 10 cm. These results indicate favorable pseudo-nondiffracting characteristics not only from the point of view of spatial propagation but also with respect to the spectral and temporal stability.
We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm2 at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.